|
"""This module contains related classes and functions for serialization.""" |
|
|
|
from __future__ import annotations |
|
|
|
import dataclasses |
|
from functools import partialmethod |
|
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, overload |
|
|
|
from pydantic_core import PydanticUndefined, core_schema |
|
from pydantic_core import core_schema as _core_schema |
|
from typing_extensions import Annotated, Literal, TypeAlias |
|
|
|
from . import PydanticUndefinedAnnotation |
|
from ._internal import _decorators, _internal_dataclass |
|
from .annotated_handlers import GetCoreSchemaHandler |
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) |
|
class PlainSerializer: |
|
"""Plain serializers use a function to modify the output of serialization. |
|
|
|
This is particularly helpful when you want to customize the serialization for annotated types. |
|
Consider an input of `list`, which will be serialized into a space-delimited string. |
|
|
|
```python |
|
from typing import List |
|
|
|
from typing_extensions import Annotated |
|
|
|
from pydantic import BaseModel, PlainSerializer |
|
|
|
CustomStr = Annotated[ |
|
List, PlainSerializer(lambda x: ' '.join(x), return_type=str) |
|
] |
|
|
|
class StudentModel(BaseModel): |
|
courses: CustomStr |
|
|
|
student = StudentModel(courses=['Math', 'Chemistry', 'English']) |
|
print(student.model_dump()) |
|
#> {'courses': 'Math Chemistry English'} |
|
``` |
|
|
|
Attributes: |
|
func: The serializer function. |
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation. |
|
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, |
|
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. |
|
""" |
|
|
|
func: core_schema.SerializerFunction |
|
return_type: Any = PydanticUndefined |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always' |
|
|
|
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: |
|
"""Gets the Pydantic core schema. |
|
|
|
Args: |
|
source_type: The source type. |
|
handler: The `GetCoreSchemaHandler` instance. |
|
|
|
Returns: |
|
The Pydantic core schema. |
|
""" |
|
schema = handler(source_type) |
|
try: |
|
return_type = _decorators.get_function_return_type( |
|
self.func, self.return_type, handler._get_types_namespace() |
|
) |
|
except NameError as e: |
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e |
|
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) |
|
schema['serialization'] = core_schema.plain_serializer_function_ser_schema( |
|
function=self.func, |
|
info_arg=_decorators.inspect_annotated_serializer(self.func, 'plain'), |
|
return_schema=return_schema, |
|
when_used=self.when_used, |
|
) |
|
return schema |
|
|
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true, frozen=True) |
|
class WrapSerializer: |
|
"""Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization |
|
logic, and can modify the resulting value before returning it as the final output of serialization. |
|
|
|
For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic. |
|
|
|
```python |
|
from datetime import datetime, timezone |
|
from typing import Any, Dict |
|
|
|
from typing_extensions import Annotated |
|
|
|
from pydantic import BaseModel, WrapSerializer |
|
|
|
class EventDatetime(BaseModel): |
|
start: datetime |
|
end: datetime |
|
|
|
def convert_to_utc(value: Any, handler, info) -> Dict[str, datetime]: |
|
# Note that `helper` can actually help serialize the `value` for further custom serialization in case it's a subclass. |
|
partial_result = handler(value, info) |
|
if info.mode == 'json': |
|
return { |
|
k: datetime.fromisoformat(v).astimezone(timezone.utc) |
|
for k, v in partial_result.items() |
|
} |
|
return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()} |
|
|
|
UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)] |
|
|
|
class EventModel(BaseModel): |
|
event_datetime: UTCEventDatetime |
|
|
|
dt = EventDatetime( |
|
start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00' |
|
) |
|
event = EventModel(event_datetime=dt) |
|
print(event.model_dump()) |
|
''' |
|
{ |
|
'event_datetime': { |
|
'start': datetime.datetime( |
|
2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc |
|
), |
|
'end': datetime.datetime( |
|
2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc |
|
), |
|
} |
|
} |
|
''' |
|
|
|
print(event.model_dump_json()) |
|
''' |
|
{"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}} |
|
''' |
|
``` |
|
|
|
Attributes: |
|
func: The serializer function to be wrapped. |
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation. |
|
when_used: Determines when this serializer should be used. Accepts a string with values `'always'`, |
|
`'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'. |
|
""" |
|
|
|
func: core_schema.WrapSerializerFunction |
|
return_type: Any = PydanticUndefined |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always' |
|
|
|
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: |
|
"""This method is used to get the Pydantic core schema of the class. |
|
|
|
Args: |
|
source_type: Source type. |
|
handler: Core schema handler. |
|
|
|
Returns: |
|
The generated core schema of the class. |
|
""" |
|
schema = handler(source_type) |
|
try: |
|
return_type = _decorators.get_function_return_type( |
|
self.func, self.return_type, handler._get_types_namespace() |
|
) |
|
except NameError as e: |
|
raise PydanticUndefinedAnnotation.from_name_error(e) from e |
|
return_schema = None if return_type is PydanticUndefined else handler.generate_schema(return_type) |
|
schema['serialization'] = core_schema.wrap_serializer_function_ser_schema( |
|
function=self.func, |
|
info_arg=_decorators.inspect_annotated_serializer(self.func, 'wrap'), |
|
return_schema=return_schema, |
|
when_used=self.when_used, |
|
) |
|
return schema |
|
|
|
|
|
if TYPE_CHECKING: |
|
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]] |
|
_PlainSerializationFunction = Union[_core_schema.SerializerFunction, _PartialClsOrStaticMethod] |
|
_WrapSerializationFunction = Union[_core_schema.WrapSerializerFunction, _PartialClsOrStaticMethod] |
|
_PlainSerializeMethodType = TypeVar('_PlainSerializeMethodType', bound=_PlainSerializationFunction) |
|
_WrapSerializeMethodType = TypeVar('_WrapSerializeMethodType', bound=_WrapSerializationFunction) |
|
|
|
|
|
@overload |
|
def field_serializer( |
|
field: str, |
|
/, |
|
*fields: str, |
|
return_type: Any = ..., |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., |
|
check_fields: bool | None = ..., |
|
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]: ... |
|
|
|
|
|
@overload |
|
def field_serializer( |
|
field: str, |
|
/, |
|
*fields: str, |
|
mode: Literal['plain'], |
|
return_type: Any = ..., |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., |
|
check_fields: bool | None = ..., |
|
) -> Callable[[_PlainSerializeMethodType], _PlainSerializeMethodType]: ... |
|
|
|
|
|
@overload |
|
def field_serializer( |
|
field: str, |
|
/, |
|
*fields: str, |
|
mode: Literal['wrap'], |
|
return_type: Any = ..., |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = ..., |
|
check_fields: bool | None = ..., |
|
) -> Callable[[_WrapSerializeMethodType], _WrapSerializeMethodType]: ... |
|
|
|
|
|
def field_serializer( |
|
*fields: str, |
|
mode: Literal['plain', 'wrap'] = 'plain', |
|
return_type: Any = PydanticUndefined, |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', |
|
check_fields: bool | None = None, |
|
) -> Callable[[Any], Any]: |
|
"""Decorator that enables custom field serialization. |
|
|
|
In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list. |
|
|
|
```python |
|
from typing import Set |
|
|
|
from pydantic import BaseModel, field_serializer |
|
|
|
class StudentModel(BaseModel): |
|
name: str = 'Jane' |
|
courses: Set[str] |
|
|
|
@field_serializer('courses', when_used='json') |
|
def serialize_courses_in_order(courses: Set[str]): |
|
return sorted(courses) |
|
|
|
student = StudentModel(courses={'Math', 'Chemistry', 'English'}) |
|
print(student.model_dump_json()) |
|
#> {"name":"Jane","courses":["Chemistry","English","Math"]} |
|
``` |
|
|
|
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information. |
|
|
|
Four signatures are supported: |
|
|
|
- `(self, value: Any, info: FieldSerializationInfo)` |
|
- `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)` |
|
- `(value: Any, info: SerializationInfo)` |
|
- `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)` |
|
|
|
Args: |
|
fields: Which field(s) the method should be called on. |
|
mode: The serialization mode. |
|
|
|
- `plain` means the function will be called instead of the default serialization logic, |
|
- `wrap` means the function will be called with an argument to optionally call the |
|
default serialization logic. |
|
return_type: Optional return type for the function, if omitted it will be inferred from the type annotation. |
|
when_used: Determines the serializer will be used for serialization. |
|
check_fields: Whether to check that the fields actually exist on the model. |
|
|
|
Returns: |
|
The decorator function. |
|
""" |
|
|
|
def dec( |
|
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any], |
|
) -> _decorators.PydanticDescriptorProxy[Any]: |
|
dec_info = _decorators.FieldSerializerDecoratorInfo( |
|
fields=fields, |
|
mode=mode, |
|
return_type=return_type, |
|
when_used=when_used, |
|
check_fields=check_fields, |
|
) |
|
return _decorators.PydanticDescriptorProxy(f, dec_info) |
|
|
|
return dec |
|
|
|
|
|
FuncType = TypeVar('FuncType', bound=Callable[..., Any]) |
|
|
|
|
|
@overload |
|
def model_serializer(__f: FuncType) -> FuncType: ... |
|
|
|
|
|
@overload |
|
def model_serializer( |
|
*, |
|
mode: Literal['plain', 'wrap'] = ..., |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', |
|
return_type: Any = ..., |
|
) -> Callable[[FuncType], FuncType]: ... |
|
|
|
|
|
def model_serializer( |
|
f: Callable[..., Any] | None = None, |
|
/, |
|
*, |
|
mode: Literal['plain', 'wrap'] = 'plain', |
|
when_used: Literal['always', 'unless-none', 'json', 'json-unless-none'] = 'always', |
|
return_type: Any = PydanticUndefined, |
|
) -> Callable[[Any], Any]: |
|
"""Decorator that enables custom model serialization. |
|
|
|
This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields. |
|
|
|
An example would be to serialize temperature to the same temperature scale, such as degrees Celsius. |
|
|
|
```python |
|
from typing import Literal |
|
|
|
from pydantic import BaseModel, model_serializer |
|
|
|
class TemperatureModel(BaseModel): |
|
unit: Literal['C', 'F'] |
|
value: int |
|
|
|
@model_serializer() |
|
def serialize_model(self): |
|
if self.unit == 'F': |
|
return {'unit': 'C', 'value': int((self.value - 32) / 1.8)} |
|
return {'unit': self.unit, 'value': self.value} |
|
|
|
temperature = TemperatureModel(unit='F', value=212) |
|
print(temperature.model_dump()) |
|
#> {'unit': 'C', 'value': 100} |
|
``` |
|
|
|
See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information. |
|
|
|
Args: |
|
f: The function to be decorated. |
|
mode: The serialization mode. |
|
|
|
- `'plain'` means the function will be called instead of the default serialization logic |
|
- `'wrap'` means the function will be called with an argument to optionally call the default |
|
serialization logic. |
|
when_used: Determines when this serializer should be used. |
|
return_type: The return type for the function. If omitted it will be inferred from the type annotation. |
|
|
|
Returns: |
|
The decorator function. |
|
""" |
|
|
|
def dec(f: Callable[..., Any]) -> _decorators.PydanticDescriptorProxy[Any]: |
|
dec_info = _decorators.ModelSerializerDecoratorInfo(mode=mode, return_type=return_type, when_used=when_used) |
|
return _decorators.PydanticDescriptorProxy(f, dec_info) |
|
|
|
if f is None: |
|
return dec |
|
else: |
|
return dec(f) |
|
|
|
|
|
AnyType = TypeVar('AnyType') |
|
|
|
|
|
if TYPE_CHECKING: |
|
SerializeAsAny = Annotated[AnyType, ...] |
|
"""Force serialization to ignore whatever is defined in the schema and instead ask the object |
|
itself how it should be serialized. |
|
In particular, this means that when model subclasses are serialized, fields present in the subclass |
|
but not in the original schema will be included. |
|
""" |
|
else: |
|
|
|
@dataclasses.dataclass(**_internal_dataclass.slots_true) |
|
class SerializeAsAny: |
|
def __class_getitem__(cls, item: Any) -> Any: |
|
return Annotated[item, SerializeAsAny()] |
|
|
|
def __get_pydantic_core_schema__( |
|
self, source_type: Any, handler: GetCoreSchemaHandler |
|
) -> core_schema.CoreSchema: |
|
schema = handler(source_type) |
|
schema_to_update = schema |
|
while schema_to_update['type'] == 'definitions': |
|
schema_to_update = schema_to_update.copy() |
|
schema_to_update = schema_to_update['schema'] |
|
schema_to_update['serialization'] = core_schema.wrap_serializer_function_ser_schema( |
|
lambda x, h: h(x), schema=core_schema.any_schema() |
|
) |
|
return schema |
|
|
|
__hash__ = object.__hash__ |
|
|