|
import json |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Callable, Optional, Type, TypeVar, Union |
|
|
|
from pydantic.v1.parse import Protocol, load_file, load_str_bytes |
|
from pydantic.v1.types import StrBytes |
|
from pydantic.v1.typing import display_as_type |
|
|
|
__all__ = ('parse_file_as', 'parse_obj_as', 'parse_raw_as', 'schema_of', 'schema_json_of') |
|
|
|
NameFactory = Union[str, Callable[[Type[Any]], str]] |
|
|
|
if TYPE_CHECKING: |
|
from pydantic.v1.typing import DictStrAny |
|
|
|
|
|
def _generate_parsing_type_name(type_: Any) -> str: |
|
return f'ParsingModel[{display_as_type(type_)}]' |
|
|
|
|
|
@lru_cache(maxsize=2048) |
|
def _get_parsing_type(type_: Any, *, type_name: Optional[NameFactory] = None) -> Any: |
|
from pydantic.v1.main import create_model |
|
|
|
if type_name is None: |
|
type_name = _generate_parsing_type_name |
|
if not isinstance(type_name, str): |
|
type_name = type_name(type_) |
|
return create_model(type_name, __root__=(type_, ...)) |
|
|
|
|
|
T = TypeVar('T') |
|
|
|
|
|
def parse_obj_as(type_: Type[T], obj: Any, *, type_name: Optional[NameFactory] = None) -> T: |
|
model_type = _get_parsing_type(type_, type_name=type_name) |
|
return model_type(__root__=obj).__root__ |
|
|
|
|
|
def parse_file_as( |
|
type_: Type[T], |
|
path: Union[str, Path], |
|
*, |
|
content_type: str = None, |
|
encoding: str = 'utf8', |
|
proto: Protocol = None, |
|
allow_pickle: bool = False, |
|
json_loads: Callable[[str], Any] = json.loads, |
|
type_name: Optional[NameFactory] = None, |
|
) -> T: |
|
obj = load_file( |
|
path, |
|
proto=proto, |
|
content_type=content_type, |
|
encoding=encoding, |
|
allow_pickle=allow_pickle, |
|
json_loads=json_loads, |
|
) |
|
return parse_obj_as(type_, obj, type_name=type_name) |
|
|
|
|
|
def parse_raw_as( |
|
type_: Type[T], |
|
b: StrBytes, |
|
*, |
|
content_type: str = None, |
|
encoding: str = 'utf8', |
|
proto: Protocol = None, |
|
allow_pickle: bool = False, |
|
json_loads: Callable[[str], Any] = json.loads, |
|
type_name: Optional[NameFactory] = None, |
|
) -> T: |
|
obj = load_str_bytes( |
|
b, |
|
proto=proto, |
|
content_type=content_type, |
|
encoding=encoding, |
|
allow_pickle=allow_pickle, |
|
json_loads=json_loads, |
|
) |
|
return parse_obj_as(type_, obj, type_name=type_name) |
|
|
|
|
|
def schema_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_kwargs: Any) -> 'DictStrAny': |
|
"""Generate a JSON schema (as dict) for the passed model or dynamically generated one""" |
|
return _get_parsing_type(type_, type_name=title).schema(**schema_kwargs) |
|
|
|
|
|
def schema_json_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_json_kwargs: Any) -> str: |
|
"""Generate a JSON schema (as JSON) for the passed model or dynamically generated one""" |
|
return _get_parsing_type(type_, type_name=title).schema_json(**schema_json_kwargs) |
|
|