---
base_model: csarron/mobilebert-uncased-squad-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I can't believe how much time has flown by since we last talked.
- text: Have you completed the assignment?
- text: What's the total budget for the campaign?
- text: What's new with you?
- text: Have a good day!
inference: true
---
# SetFit with csarron/mobilebert-uncased-squad-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |
- "How's the family?"
- 'Thanks a million.'
- 'I appreciate your kindness.'
|
| 0 | - 'What is the next step in the process?'
- 'Please complete the review by the end of the week.'
- 'I feel disconnected from reality.'
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-mobile-bert-phatic")
# Run inference
preds = model("Have a good day!")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 8.2394 | 184 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 143 |
| 1 | 116 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0009 | 1 | 0.3528 | - |
| 1.0 | 1068 | 0.0252 | 0.0729 |
| 2.0 | 2136 | 0.0001 | 0.0544 |
| 0.0015 | 1 | 0.0 | - |
| 0.0772 | 50 | 0.001 | - |
| 0.1543 | 100 | 0.0 | - |
| 0.2315 | 150 | 0.0 | - |
| 0.3086 | 200 | 0.0 | - |
| 0.3858 | 250 | 0.0015 | - |
| 0.4630 | 300 | 0.001 | - |
| 0.5401 | 350 | 0.0 | - |
| 0.6173 | 400 | 0.0 | - |
| 0.6944 | 450 | 0.0 | - |
| 0.7716 | 500 | 0.0 | - |
| 0.8488 | 550 | 0.0 | - |
| 0.9259 | 600 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.39.0
- PyTorch: 2.0.1+cu117
- Datasets: 3.1.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```