--- base_model: csarron/mobilebert-uncased-squad-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: I can't believe how much time has flown by since we last talked. - text: Have you completed the assignment? - text: What's the total budget for the campaign? - text: What's new with you? - text: Have a good day! inference: true --- # SetFit with csarron/mobilebert-uncased-squad-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("richie-ghost/setfit-mobile-bert-phatic") # Run inference preds = model("Have a good day!") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 8.2394 | 184 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 143 | | 1 | 116 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0009 | 1 | 0.3528 | - | | 1.0 | 1068 | 0.0252 | 0.0729 | | 2.0 | 2136 | 0.0001 | 0.0544 | | 0.0015 | 1 | 0.0 | - | | 0.0772 | 50 | 0.001 | - | | 0.1543 | 100 | 0.0 | - | | 0.2315 | 150 | 0.0 | - | | 0.3086 | 200 | 0.0 | - | | 0.3858 | 250 | 0.0015 | - | | 0.4630 | 300 | 0.001 | - | | 0.5401 | 350 | 0.0 | - | | 0.6173 | 400 | 0.0 | - | | 0.6944 | 450 | 0.0 | - | | 0.7716 | 500 | 0.0 | - | | 0.8488 | 550 | 0.0 | - | | 0.9259 | 600 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.39.0 - PyTorch: 2.0.1+cu117 - Datasets: 3.1.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```