rin2401 commited on
Commit
0067fbe
·
1 Parent(s): 67169b0

ppo-LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.51 +/- 21.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2b0fb1790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2b0fb1820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2b0fb18b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2b0fb1940>", "_build": "<function ActorCriticPolicy._build at 0x7fa2b0fb19d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2b0fb1a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2b0fb1af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2b0fb1b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2b0fb1c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2b0fb1ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2b0fb1d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa2b0fb3180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671120790359042990, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvIL3hoIy6fKq8O7zAL7WRVEO5LygOtAAAgD8AAIA/RrYfPq4fkjl69V87EsahOGqtBTzDdPy5AACAPwAAgD/m3wM9FGSCunHXv7eEypw0uY/Wt7rl3jYAAIA/AACAP7NE1T0pMC+67pBWvPckyDMDRIE6RCYeswAAAAAAAIA/AGJUPFwTULrBVkM6pGYstaGVrTpVfWO5AACAPwAAgD8A8eM8SBuTup59hzlfmo22WaamuhLVmbgAAIA/AACAP2YfUD325AC6xJdFO6vUpjYYIMs6LR9nugAAgD8AAIA/AJheuxTgpbo9Kvk466rsM+k/rjoCGQ+4AACAPwAAgD/msh49KYh2uk1Xdzpx/ho2yXqJOpBXkLkAAIA/AACAP3NIxj0Lhgc/iz2Pvd2mmb6ggAQ8Of+JvQAAAAAAAAAA2mytPcP5aLrr2tY6PHGONE6TirnzQfm5AACAPwAAgD8AfCS94fqwuC+iwLoNmia1YFq5u03Z5TkAAIA/AACAP804pDx7DIu6hD+AvTlqZDVa7gi7I3PItAAAgD8AAIA/AKPCvPYoTbqYMVa7mUBxOKdomzsO6Ow5AACAPwAAgD+aXTO9KYADut7YjDnW5fw0+D7mOxaYprgAAIA/AACAPwCEfL0KUzy7lcp6va5cJT1x3CI8fAcLvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeVc9YB72X0CUhpRSlIwBbJRN6AOMAXSUR0CTvEOfNA1OdX2UKGgGaAloD0MIh+C4jJvFZUCUhpRSlGgVTegDaBZHQJPCpu76Hj91fZQoaAZoCWgPQwh/SwD+qSNmQJSGlFKUaBVN6ANoFkdAk8Ws9B8hLXV9lChoBmgJaA9DCP/omzSNV2RAlIaUUpRoFU3oA2gWR0CTyBVVxS5zdX2UKGgGaAloD0MI0jjU78JVY0CUhpRSlGgVTegDaBZHQJPIn7Kq4pd1fZQoaAZoCWgPQwgsDmd+NclgQJSGlFKUaBVN6ANoFkdAk9A5ZfUnX3V9lChoBmgJaA9DCJj3ONOEumNAlIaUUpRoFU3oA2gWR0CT0Z5u63AmdX2UKGgGaAloD0MIjIaMR6npXUCUhpRSlGgVTegDaBZHQJPSjgLqlgt1fZQoaAZoCWgPQwj/XZ8568c3QJSGlFKUaBVL12gWR0CT0wJgb6xgdX2UKGgGaAloD0MIVHJO7CEtZkCUhpRSlGgVTegDaBZHQJPdV1QqI8B1fZQoaAZoCWgPQwga3qzBe0tjQJSGlFKUaBVN6ANoFkdAk93D37DVIHV9lChoBmgJaA9DCAGHUKVmy2VAlIaUUpRoFU3oA2gWR0CT3kKr7wazdX2UKGgGaAloD0MI7E53nvhLZUCUhpRSlGgVTegDaBZHQJPfDTy8SPF1fZQoaAZoCWgPQwhtcvikE0FgQJSGlFKUaBVN6ANoFkdAk+OYf8uSOnV9lChoBmgJaA9DCAUVVb9SVGRAlIaUUpRoFU3oA2gWR0CT+TGSZBszdX2UKGgGaAloD0MIGlHaG/xjZ0CUhpRSlGgVTegDaBZHQJP/ZIFvAGl1fZQoaAZoCWgPQwhDrtSzoD9oQJSGlFKUaBVN6ANoFkdAlAMec2BJ7XV9lChoBmgJaA9DCHAGf7+YjGJAlIaUUpRoFU3oA2gWR0CUBRMOPNmldX2UKGgGaAloD0MI/u4dNSZIPkCUhpRSlGgVS99oFkdAlAYY/3WWhXV9lChoBmgJaA9DCMXJ/Q7F12VAlIaUUpRoFU3oA2gWR0CUC4VsUIszdX2UKGgGaAloD0MI0VynkRYzZkCUhpRSlGgVTegDaBZHQJQOfyWiUPh1fZQoaAZoCWgPQwivCP63ErFjQJSGlFKUaBVN6ANoFkdAlBG5Gax5cHV9lChoBmgJaA9DCF9CBYcXtk9AlIaUUpRoFUvcaBZHQJQR1llK9PF1fZQoaAZoCWgPQwh0XI3synloQJSGlFKUaBVN6ANoFkdAlBqujua4MHV9lChoBmgJaA9DCEWeJF0zql9AlIaUUpRoFU3oA2gWR0CUHFKBd2PldX2UKGgGaAloD0MIdjOjH40pZ0CUhpRSlGgVTegDaBZHQJQdaE4//vR1fZQoaAZoCWgPQwi14bA08D9gQJSGlFKUaBVN6ANoFkdAlB3yW3Sa3XV9lChoBmgJaA9DCKDctu9RHWVAlIaUUpRoFU3oA2gWR0CUKfn4O+ZgdX2UKGgGaAloD0MI+N9KduwMYkCUhpRSlGgVTegDaBZHQJQqfikwevJ1fZQoaAZoCWgPQwglea7vQzRjQJSGlFKUaBVN6ANoFkdAlCsS1Z1V53V9lChoBmgJaA9DCDgyj/zBP2lAlIaUUpRoFU3oA2gWR0CUK/i9Zid8dX2UKGgGaAloD0MI9kGWBZN4YECUhpRSlGgVTegDaBZHQJQxIMZxaPl1fZQoaAZoCWgPQwiDh2nf3KxmQJSGlFKUaBVN6ANoFkdAlE3k6tDD0nV9lChoBmgJaA9DCJjCg2ZX2GVAlIaUUpRoFU3oA2gWR0CUUlo2n88+dX2UKGgGaAloD0MITPvm/ursX0CUhpRSlGgVTegDaBZHQJRV3vDxb0R1fZQoaAZoCWgPQwhiokEKnlNdQJSGlFKUaBVN6ANoFkdAlFw9GRV6vHV9lChoBmgJaA9DCLvurUhMRFFAlIaUUpRoFUvoaBZHQJRds4uK4x11fZQoaAZoCWgPQwg26bZELoBiQJSGlFKUaBVN6ANoFkdAlF9we3hGY3V9lChoBmgJaA9DCJyiI7n8xUhAlIaUUpRoFUu7aBZHQJRhzdHlOoJ1fZQoaAZoCWgPQwhh4Ln3cGpjQJSGlFKUaBVN6ANoFkdAlGLOXRgJC3V9lChoBmgJaA9DCAoS292DBWhAlIaUUpRoFU3oA2gWR0CUYvmU4aP0dX2UKGgGaAloD0MI0NIVbKNDY0CUhpRSlGgVTegDaBZHQJRuj3g1m8N1fZQoaAZoCWgPQwht5SX/k99iQJSGlFKUaBVN6ANoFkdAlHDERradtnV9lChoBmgJaA9DCErx8QnZIGRAlIaUUpRoFU3oA2gWR0CUckHJ9y93dX2UKGgGaAloD0MIuaerOxZ/Z0CUhpRSlGgVTegDaBZHQJRy9sdkrgB1fZQoaAZoCWgPQwgsuB/wwMlgQJSGlFKUaBVN6ANoFkdAlH8lFc6eXnV9lChoBmgJaA9DCBxAv+/fIWRAlIaUUpRoFU3oA2gWR0CUf5+evpyIdX2UKGgGaAloD0MIQfD49i7PYECUhpRSlGgVTegDaBZHQJSAOTlkpZx1fZQoaAZoCWgPQwhlcf+Raf9iQJSGlFKUaBVN6ANoFkdAlIEoX0oSc3V9lChoBmgJaA9DCOs3E9OF0GFAlIaUUpRoFU3oA2gWR0CUho1n/T9bdX2UKGgGaAloD0MInWSryykoZECUhpRSlGgVTegDaBZHQJSnCMPz4Dd1fZQoaAZoCWgPQwg983LY/fJhQJSGlFKUaBVN6ANoFkdAlLCnJLdvbXV9lChoBmgJaA9DCN45lKGq1mdAlIaUUpRoFU3oA2gWR0CUshKODJ2ddX2UKGgGaAloD0MIpdx9jg+5ZECUhpRSlGgVTegDaBZHQJSzvuqm0md1fZQoaAZoCWgPQwh0Ka4q+2tiQJSGlFKUaBVN6ANoFkdAlLYppi7TUnV9lChoBmgJaA9DCF4R/G+lmmNAlIaUUpRoFU3oA2gWR0CUtuCGetjkdX2UKGgGaAloD0MIEvsEUIz6YkCUhpRSlGgVTegDaBZHQJS2+3x4IKN1fZQoaAZoCWgPQwjohTsXRuBjQJSGlFKUaBVN6ANoFkdAlL6U7W/ag3V9lChoBmgJaA9DCBJLyt3nm2FAlIaUUpRoFU3oA2gWR0CUv/5LRKHxdX2UKGgGaAloD0MI0nDK3HzfZECUhpRSlGgVTegDaBZHQJTBAHPeHi51fZQoaAZoCWgPQwg9J71v/PdmQJSGlFKUaBVN6ANoFkdAlMF2C2+fy3V9lChoBmgJaA9DCCyBlNg1zmFAlIaUUpRoFU3oA2gWR0CUzIk9U0emdX2UKGgGaAloD0MIwvwVMtcEY0CUhpRSlGgVTegDaBZHQJTM9d2PkrB1fZQoaAZoCWgPQwi3CIz1jWRmQJSGlFKUaBVN6ANoFkdAlM18YAKfF3V9lChoBmgJaA9DCL99HThn32FAlIaUUpRoFU3oA2gWR0CUzl2eg+QmdX2UKGgGaAloD0MIBvNXyFwCZkCUhpRSlGgVTegDaBZHQJTTe8/Uvwp1fZQoaAZoCWgPQwiwOnKkM8pkQJSGlFKUaBVN6ANoFkdAlPQorvsqrnV9lChoBmgJaA9DCKgAGM+gVWJAlIaUUpRoFU3oA2gWR0CU/Wb/wRXfdX2UKGgGaAloD0MII0p7gy/zYUCUhpRSlGgVTegDaBZHQJT+1X0XgtR1fZQoaAZoCWgPQwizsRLzrPVkQJSGlFKUaBVN6ANoFkdAlQBx0uDjBHV9lChoBmgJaA9DCO1Ky0i9ol5AlIaUUpRoFU3oA2gWR0CVArzJIUaidX2UKGgGaAloD0MIO8JpwQvXYUCUhpRSlGgVTegDaBZHQJUDauSwGGF1fZQoaAZoCWgPQwirr64KVFxkQJSGlFKUaBVN6ANoFkdAlQOEQK8cuXV9lChoBmgJaA9DCNxmKsQjYl1AlIaUUpRoFU3oA2gWR0CVCuvStvGZdX2UKGgGaAloD0MIwZFAg82QZECUhpRSlGgVTegDaBZHQJUMKk1uR9x1fZQoaAZoCWgPQwj9ogT9hTZkQJSGlFKUaBVN6ANoFkdAlQ0Ku0TlDHV9lChoBmgJaA9DCG3n+6nx3l9AlIaUUpRoFU3oA2gWR0CVDX4H5aePdX2UKGgGaAloD0MIvW4RGOu0ZkCUhpRSlGgVTegDaBZHQJUYA3fhuO11fZQoaAZoCWgPQwgK2uTwycJkQJSGlFKUaBVN6ANoFkdAlRhsZYPoV3V9lChoBmgJaA9DCBzvjoxVvWVAlIaUUpRoFU3oA2gWR0CVGPIBBAv+dX2UKGgGaAloD0MI3GPpQ5exZkCUhpRSlGgVTegDaBZHQJUZ39zfaYh1fZQoaAZoCWgPQwhU/UrnQw5jQJSGlFKUaBVN6ANoFkdAlR7XGXHBDXV9lChoBmgJaA9DCCwrTUpB/mBAlIaUUpRoFU3oA2gWR0CVPnTVlPJrdX2UKGgGaAloD0MIADyiQvW2ZkCUhpRSlGgVTegDaBZHQJVHRoi9qUN1fZQoaAZoCWgPQwi5MxMM55dnQJSGlFKUaBVN6ANoFkdAlUiokqtoz3V9lChoBmgJaA9DCL9/8+LEcl9AlIaUUpRoFU3oA2gWR0CVSkC5EtuldX2UKGgGaAloD0MI0lPkEHGmYECUhpRSlGgVTegDaBZHQJVMltTDO1R1fZQoaAZoCWgPQwhATwMGyXNiQJSGlFKUaBVN6ANoFkdAlU062KEWZnV9lChoBmgJaA9DCItvKHy2B2VAlIaUUpRoFU3oA2gWR0CVTVOy3Td+dX2UKGgGaAloD0MICJPi4xPiZECUhpRSlGgVTegDaBZHQJVUtghKUV11fZQoaAZoCWgPQwjCNAwfkR1kQJSGlFKUaBVN6ANoFkdAlVYZXEIgNnV9lChoBmgJaA9DCI9xxcXRZ2ZAlIaUUpRoFU3oA2gWR0CVVxEhaC+UdX2UKGgGaAloD0MIAAAAAAB7ZUCUhpRSlGgVTegDaBZHQJVXiH1vl2h1fZQoaAZoCWgPQwgSwM3ixY5IQJSGlFKUaBVL12gWR0CVWC6asp5NdX2UKGgGaAloD0MIPe/GgsL7U0CUhpRSlGgVS8doFkdAlV9sJMQEp3V9lChoBmgJaA9DCJlIaTaPIGZAlIaUUpRoFU3oA2gWR0CVYiA/LTx5dX2UKGgGaAloD0MIgZauYJsnYkCUhpRSlGgVTegDaBZHQJVij4etCAt1fZQoaAZoCWgPQwjTE5Z4QB9lQJSGlFKUaBVN6ANoFkdAlWMJBcAzYXV9lChoBmgJaA9DCK358ZeWAGZAlIaUUpRoFU3oA2gWR0CVY+FspG4JdX2UKGgGaAloD0MI/5O/e0dhZkCUhpRSlGgVTegDaBZHQJVox9E1EVp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2327045c12140ab711f2b7fecdb35d2696504d5da4baabeeead4900a49ce2a5
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2b0fb1790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2b0fb1820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2b0fb18b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2b0fb1940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa2b0fb19d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa2b0fb1a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2b0fb1af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa2b0fb1b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2b0fb1c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2b0fb1ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2b0fb1d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa2b0fb3180>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671120790359042990,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvIL3hoIy6fKq8O7zAL7WRVEO5LygOtAAAgD8AAIA/RrYfPq4fkjl69V87EsahOGqtBTzDdPy5AACAPwAAgD/m3wM9FGSCunHXv7eEypw0uY/Wt7rl3jYAAIA/AACAP7NE1T0pMC+67pBWvPckyDMDRIE6RCYeswAAAAAAAIA/AGJUPFwTULrBVkM6pGYstaGVrTpVfWO5AACAPwAAgD8A8eM8SBuTup59hzlfmo22WaamuhLVmbgAAIA/AACAP2YfUD325AC6xJdFO6vUpjYYIMs6LR9nugAAgD8AAIA/AJheuxTgpbo9Kvk466rsM+k/rjoCGQ+4AACAPwAAgD/msh49KYh2uk1Xdzpx/ho2yXqJOpBXkLkAAIA/AACAP3NIxj0Lhgc/iz2Pvd2mmb6ggAQ8Of+JvQAAAAAAAAAA2mytPcP5aLrr2tY6PHGONE6TirnzQfm5AACAPwAAgD8AfCS94fqwuC+iwLoNmia1YFq5u03Z5TkAAIA/AACAP804pDx7DIu6hD+AvTlqZDVa7gi7I3PItAAAgD8AAIA/AKPCvPYoTbqYMVa7mUBxOKdomzsO6Ow5AACAPwAAgD+aXTO9KYADut7YjDnW5fw0+D7mOxaYprgAAIA/AACAPwCEfL0KUzy7lcp6va5cJT1x3CI8fAcLvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeVc9YB72X0CUhpRSlIwBbJRN6AOMAXSUR0CTvEOfNA1OdX2UKGgGaAloD0MIh+C4jJvFZUCUhpRSlGgVTegDaBZHQJPCpu76Hj91fZQoaAZoCWgPQwh/SwD+qSNmQJSGlFKUaBVN6ANoFkdAk8Ws9B8hLXV9lChoBmgJaA9DCP/omzSNV2RAlIaUUpRoFU3oA2gWR0CTyBVVxS5zdX2UKGgGaAloD0MI0jjU78JVY0CUhpRSlGgVTegDaBZHQJPIn7Kq4pd1fZQoaAZoCWgPQwgsDmd+NclgQJSGlFKUaBVN6ANoFkdAk9A5ZfUnX3V9lChoBmgJaA9DCJj3ONOEumNAlIaUUpRoFU3oA2gWR0CT0Z5u63AmdX2UKGgGaAloD0MIjIaMR6npXUCUhpRSlGgVTegDaBZHQJPSjgLqlgt1fZQoaAZoCWgPQwj/XZ8568c3QJSGlFKUaBVL12gWR0CT0wJgb6xgdX2UKGgGaAloD0MIVHJO7CEtZkCUhpRSlGgVTegDaBZHQJPdV1QqI8B1fZQoaAZoCWgPQwga3qzBe0tjQJSGlFKUaBVN6ANoFkdAk93D37DVIHV9lChoBmgJaA9DCAGHUKVmy2VAlIaUUpRoFU3oA2gWR0CT3kKr7wazdX2UKGgGaAloD0MI7E53nvhLZUCUhpRSlGgVTegDaBZHQJPfDTy8SPF1fZQoaAZoCWgPQwhtcvikE0FgQJSGlFKUaBVN6ANoFkdAk+OYf8uSOnV9lChoBmgJaA9DCAUVVb9SVGRAlIaUUpRoFU3oA2gWR0CT+TGSZBszdX2UKGgGaAloD0MIGlHaG/xjZ0CUhpRSlGgVTegDaBZHQJP/ZIFvAGl1fZQoaAZoCWgPQwhDrtSzoD9oQJSGlFKUaBVN6ANoFkdAlAMec2BJ7XV9lChoBmgJaA9DCHAGf7+YjGJAlIaUUpRoFU3oA2gWR0CUBRMOPNmldX2UKGgGaAloD0MI/u4dNSZIPkCUhpRSlGgVS99oFkdAlAYY/3WWhXV9lChoBmgJaA9DCMXJ/Q7F12VAlIaUUpRoFU3oA2gWR0CUC4VsUIszdX2UKGgGaAloD0MI0VynkRYzZkCUhpRSlGgVTegDaBZHQJQOfyWiUPh1fZQoaAZoCWgPQwivCP63ErFjQJSGlFKUaBVN6ANoFkdAlBG5Gax5cHV9lChoBmgJaA9DCF9CBYcXtk9AlIaUUpRoFUvcaBZHQJQR1llK9PF1fZQoaAZoCWgPQwh0XI3synloQJSGlFKUaBVN6ANoFkdAlBqujua4MHV9lChoBmgJaA9DCEWeJF0zql9AlIaUUpRoFU3oA2gWR0CUHFKBd2PldX2UKGgGaAloD0MIdjOjH40pZ0CUhpRSlGgVTegDaBZHQJQdaE4//vR1fZQoaAZoCWgPQwi14bA08D9gQJSGlFKUaBVN6ANoFkdAlB3yW3Sa3XV9lChoBmgJaA9DCKDctu9RHWVAlIaUUpRoFU3oA2gWR0CUKfn4O+ZgdX2UKGgGaAloD0MI+N9KduwMYkCUhpRSlGgVTegDaBZHQJQqfikwevJ1fZQoaAZoCWgPQwglea7vQzRjQJSGlFKUaBVN6ANoFkdAlCsS1Z1V53V9lChoBmgJaA9DCDgyj/zBP2lAlIaUUpRoFU3oA2gWR0CUK/i9Zid8dX2UKGgGaAloD0MI9kGWBZN4YECUhpRSlGgVTegDaBZHQJQxIMZxaPl1fZQoaAZoCWgPQwiDh2nf3KxmQJSGlFKUaBVN6ANoFkdAlE3k6tDD0nV9lChoBmgJaA9DCJjCg2ZX2GVAlIaUUpRoFU3oA2gWR0CUUlo2n88+dX2UKGgGaAloD0MITPvm/ursX0CUhpRSlGgVTegDaBZHQJRV3vDxb0R1fZQoaAZoCWgPQwhiokEKnlNdQJSGlFKUaBVN6ANoFkdAlFw9GRV6vHV9lChoBmgJaA9DCLvurUhMRFFAlIaUUpRoFUvoaBZHQJRds4uK4x11fZQoaAZoCWgPQwg26bZELoBiQJSGlFKUaBVN6ANoFkdAlF9we3hGY3V9lChoBmgJaA9DCJyiI7n8xUhAlIaUUpRoFUu7aBZHQJRhzdHlOoJ1fZQoaAZoCWgPQwhh4Ln3cGpjQJSGlFKUaBVN6ANoFkdAlGLOXRgJC3V9lChoBmgJaA9DCAoS292DBWhAlIaUUpRoFU3oA2gWR0CUYvmU4aP0dX2UKGgGaAloD0MI0NIVbKNDY0CUhpRSlGgVTegDaBZHQJRuj3g1m8N1fZQoaAZoCWgPQwht5SX/k99iQJSGlFKUaBVN6ANoFkdAlHDERradtnV9lChoBmgJaA9DCErx8QnZIGRAlIaUUpRoFU3oA2gWR0CUckHJ9y93dX2UKGgGaAloD0MIuaerOxZ/Z0CUhpRSlGgVTegDaBZHQJRy9sdkrgB1fZQoaAZoCWgPQwgsuB/wwMlgQJSGlFKUaBVN6ANoFkdAlH8lFc6eXnV9lChoBmgJaA9DCBxAv+/fIWRAlIaUUpRoFU3oA2gWR0CUf5+evpyIdX2UKGgGaAloD0MIQfD49i7PYECUhpRSlGgVTegDaBZHQJSAOTlkpZx1fZQoaAZoCWgPQwhlcf+Raf9iQJSGlFKUaBVN6ANoFkdAlIEoX0oSc3V9lChoBmgJaA9DCOs3E9OF0GFAlIaUUpRoFU3oA2gWR0CUho1n/T9bdX2UKGgGaAloD0MInWSryykoZECUhpRSlGgVTegDaBZHQJSnCMPz4Dd1fZQoaAZoCWgPQwg983LY/fJhQJSGlFKUaBVN6ANoFkdAlLCnJLdvbXV9lChoBmgJaA9DCN45lKGq1mdAlIaUUpRoFU3oA2gWR0CUshKODJ2ddX2UKGgGaAloD0MIpdx9jg+5ZECUhpRSlGgVTegDaBZHQJSzvuqm0md1fZQoaAZoCWgPQwh0Ka4q+2tiQJSGlFKUaBVN6ANoFkdAlLYppi7TUnV9lChoBmgJaA9DCF4R/G+lmmNAlIaUUpRoFU3oA2gWR0CUtuCGetjkdX2UKGgGaAloD0MIEvsEUIz6YkCUhpRSlGgVTegDaBZHQJS2+3x4IKN1fZQoaAZoCWgPQwjohTsXRuBjQJSGlFKUaBVN6ANoFkdAlL6U7W/ag3V9lChoBmgJaA9DCBJLyt3nm2FAlIaUUpRoFU3oA2gWR0CUv/5LRKHxdX2UKGgGaAloD0MI0nDK3HzfZECUhpRSlGgVTegDaBZHQJTBAHPeHi51fZQoaAZoCWgPQwg9J71v/PdmQJSGlFKUaBVN6ANoFkdAlMF2C2+fy3V9lChoBmgJaA9DCCyBlNg1zmFAlIaUUpRoFU3oA2gWR0CUzIk9U0emdX2UKGgGaAloD0MIwvwVMtcEY0CUhpRSlGgVTegDaBZHQJTM9d2PkrB1fZQoaAZoCWgPQwi3CIz1jWRmQJSGlFKUaBVN6ANoFkdAlM18YAKfF3V9lChoBmgJaA9DCL99HThn32FAlIaUUpRoFU3oA2gWR0CUzl2eg+QmdX2UKGgGaAloD0MIBvNXyFwCZkCUhpRSlGgVTegDaBZHQJTTe8/Uvwp1fZQoaAZoCWgPQwiwOnKkM8pkQJSGlFKUaBVN6ANoFkdAlPQorvsqrnV9lChoBmgJaA9DCKgAGM+gVWJAlIaUUpRoFU3oA2gWR0CU/Wb/wRXfdX2UKGgGaAloD0MII0p7gy/zYUCUhpRSlGgVTegDaBZHQJT+1X0XgtR1fZQoaAZoCWgPQwizsRLzrPVkQJSGlFKUaBVN6ANoFkdAlQBx0uDjBHV9lChoBmgJaA9DCO1Ky0i9ol5AlIaUUpRoFU3oA2gWR0CVArzJIUaidX2UKGgGaAloD0MIO8JpwQvXYUCUhpRSlGgVTegDaBZHQJUDauSwGGF1fZQoaAZoCWgPQwirr64KVFxkQJSGlFKUaBVN6ANoFkdAlQOEQK8cuXV9lChoBmgJaA9DCNxmKsQjYl1AlIaUUpRoFU3oA2gWR0CVCuvStvGZdX2UKGgGaAloD0MIwZFAg82QZECUhpRSlGgVTegDaBZHQJUMKk1uR9x1fZQoaAZoCWgPQwj9ogT9hTZkQJSGlFKUaBVN6ANoFkdAlQ0Ku0TlDHV9lChoBmgJaA9DCG3n+6nx3l9AlIaUUpRoFU3oA2gWR0CVDX4H5aePdX2UKGgGaAloD0MIvW4RGOu0ZkCUhpRSlGgVTegDaBZHQJUYA3fhuO11fZQoaAZoCWgPQwgK2uTwycJkQJSGlFKUaBVN6ANoFkdAlRhsZYPoV3V9lChoBmgJaA9DCBzvjoxVvWVAlIaUUpRoFU3oA2gWR0CVGPIBBAv+dX2UKGgGaAloD0MI3GPpQ5exZkCUhpRSlGgVTegDaBZHQJUZ39zfaYh1fZQoaAZoCWgPQwhU/UrnQw5jQJSGlFKUaBVN6ANoFkdAlR7XGXHBDXV9lChoBmgJaA9DCCwrTUpB/mBAlIaUUpRoFU3oA2gWR0CVPnTVlPJrdX2UKGgGaAloD0MIADyiQvW2ZkCUhpRSlGgVTegDaBZHQJVHRoi9qUN1fZQoaAZoCWgPQwi5MxMM55dnQJSGlFKUaBVN6ANoFkdAlUiokqtoz3V9lChoBmgJaA9DCL9/8+LEcl9AlIaUUpRoFU3oA2gWR0CVSkC5EtuldX2UKGgGaAloD0MI0lPkEHGmYECUhpRSlGgVTegDaBZHQJVMltTDO1R1fZQoaAZoCWgPQwhATwMGyXNiQJSGlFKUaBVN6ANoFkdAlU062KEWZnV9lChoBmgJaA9DCItvKHy2B2VAlIaUUpRoFU3oA2gWR0CVTVOy3Td+dX2UKGgGaAloD0MICJPi4xPiZECUhpRSlGgVTegDaBZHQJVUtghKUV11fZQoaAZoCWgPQwjCNAwfkR1kQJSGlFKUaBVN6ANoFkdAlVYZXEIgNnV9lChoBmgJaA9DCI9xxcXRZ2ZAlIaUUpRoFU3oA2gWR0CVVxEhaC+UdX2UKGgGaAloD0MIAAAAAAB7ZUCUhpRSlGgVTegDaBZHQJVXiH1vl2h1fZQoaAZoCWgPQwgSwM3ixY5IQJSGlFKUaBVL12gWR0CVWC6asp5NdX2UKGgGaAloD0MIPe/GgsL7U0CUhpRSlGgVS8doFkdAlV9sJMQEp3V9lChoBmgJaA9DCJlIaTaPIGZAlIaUUpRoFU3oA2gWR0CVYiA/LTx5dX2UKGgGaAloD0MIgZauYJsnYkCUhpRSlGgVTegDaBZHQJVij4etCAt1fZQoaAZoCWgPQwjTE5Z4QB9lQJSGlFKUaBVN6ANoFkdAlWMJBcAzYXV9lChoBmgJaA9DCK358ZeWAGZAlIaUUpRoFU3oA2gWR0CVY+FspG4JdX2UKGgGaAloD0MI/5O/e0dhZkCUhpRSlGgVTegDaBZHQJVox9E1EVp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eefb27543dea63bfae22cbb62af50927359d26f7e10e1f6719dd800251e40a9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b08c9c2beb24e6a29f01d571a928bc63fe7bf2c3235fa2b1395e7449b2b57b97
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (244 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.50834461445106, "std_reward": 21.870611332765115, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-15T16:33:32.736194"}