File size: 4,965 Bytes
0d3a04b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
language:
- ja
- en
tags:
- llama
- llama-3
- gptq
inference: false
---

# `Llama 3 Youko 70B Instruct GPTQ (rinna/llama-3-youko-70b-instruct-gptq)`

![rinna-icon](./rinna.png)

# Overview

rinna/llama-3-youko-70b-instruct-gptq is the quantized model for [rinna/llama-3-youko-70b-instruct](https://huggingface.co/rinna/llama-3-youko-70b-instruct) using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ). The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.

| Size | Continual Pre-Training | Instruction-Tuning |
| :-   | :-                     | :-                 |
| 8B   | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) |
| 70B  | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) |

* **Training: Built with Meta Llama 3**

  See [rinna/llama-3-youko-70b-instruct](https://huggingface.co/rinna/llama-3-youko-70b-instruct) for details about model architecture and data.

  
* **Contributors**

    - [Toshiaki Wakatsuki](https://huggingface.co/t-w)
    - [Koh Mitsuda](https://huggingface.co/mitsu-koh)
    - [Xinqi Chen](https://huggingface.co/Keely0419)
    - [Kei Sawada](https://huggingface.co/keisawada)

---

# Benchmarking

Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).

---

# How to use the model

We found this instruction-tuned model tends to generate repeated text more often than its base counterpart, and thus we set repetition_penalty=1.1 for better generation performance. The same repetition penalty was applied to the instruction-tuned model in the aforementioned evaluation experiments.

~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "rinna/llama-3-youko-70b-instruct-gptq"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
)

messages = [
    {"role": "system", "content": "あなたは誠実で優秀なアシスタントです。どうか、簡潔かつ正直に答えてください。"},
    {"role": "user", "content": "西田幾多郎とはどんな人物ですか?"},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=512,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
    repetition_penalty=1.1,
)

response = outputs[0][input_ids.shape[-1]:]
response = tokenizer.decode(response, skip_special_tokens=True)
print(response)
~~~~

---

# Tokenization
The model uses the original [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) tokenizer.

---

# How to cite
```bibtex
@misc{rinna-llama-3-youko-70b-instruct-gptq,
    title = {rinna/llama-3-youko-70b-instruct-gptq},
    author = {Wakatsuki, Toshiaki and Mitsuda, Koh and Chen, Xinqi and Sawada, Kei},
    url = {https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---

# References
```bibtex
@article{llama3modelcard,
    title = {Llama 3 Model Card},
    author = {AI@Meta},
    year = {2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}

@article{frantar2022gptq,
    title = {{GPTQ}: Accurate Post-training Compression for Generative Pretrained Transformers},
    author = {Frantar, Elias and Ashkboos, Saleh and Hoefler, Torsten and Alistarh, Dan},
    year = {2022},
    url = {https://arxiv.org/abs/2210.17323}
}
```
---

# License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)