File size: 7,184 Bytes
268295d
 
2f73ffc
 
cb5aa9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268295d
7b04169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5aa9d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
license: apache-2.0
tags:
- merge
model-index:
- name: CatPPT-base
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 67.92
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.26
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 61.72
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
      name: Open LLM Leaderboard
---

# 😼 CatPPT

Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat.

This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination.

![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png)

## Model date

rishiraj/CatPPT was trained between 15th and 17th December, 2023.

## Evaluation

It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**.

|Model                               |Average|ARC  |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|
|------------------------------------|-------|-----|---------|-----|----------|----------|-----|
|**rishiraj/CatPPT**                     |**72.32**  |**68.09**|**86.69**    |**65.16**|**61.55**     |**81.61**     |**70.81**|
|Intel/neural-chat-7b-v3-3           |69.83  |66.89|85.26    |63.07|63.01     |79.64     |61.11|
|openchat/openchat-3.5-1210          |68.89  |64.93|84.92    |64.62|52.15     |80.74     |65.96|
|meta-math/MetaMath-Mistral-7B       |65.78  |60.67|82.58    |61.95|44.89     |75.77     |68.84|
|Deci/DeciLM-7B-instruct             |63.19  |61.01|82.37    |60.24|49.75     |79.72     |46.02|
|mistralai/Mistral-7B-Instruct-v0.2  |65.71  |63.14|84.88    |60.78|68.26     |77.19     |40.03|
|mistralai/Mixtral-8x7B-Instruct-v0.1|72.62  |70.22|87.63    |71.16|64.58     |81.37     |60.73|
|meta-llama/Llama-2-70b-hf           |67.87  |67.32|87.33    |69.83|44.92     |83.74     |54.06|
|tiiuae/falcon-180B                  |67.85  |69.45|88.86    |70.5 |45.47     |86.9      |45.94|

## Inference procedure

Here's how you can run the model using the pipeline() function from 🤗 Transformers:

```
import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate"
    },
    {
        "role": "user",
        "content": "How many helicopters can a human eat in one sitting?"
    }
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9947        | 0.16  | 3    | 2.0093          |


### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0
- PEFT 0.6.1

## Citation Information

```
@misc{rishiraj2023catppt,
  author = {Rishiraj Acharya},
  title = {CatPPT},
  year = {2023},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rishiraj__CatPPT-base)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.25|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot)              |86.64|
|MMLU (5-Shot)                    |65.26|
|TruthfulQA (0-shot)              |61.72|
|Winogrande (5-shot)              |81.29|
|GSM8k (5-shot)                   |70.66|