File size: 7,184 Bytes
268295d 2f73ffc cb5aa9d 268295d 7b04169 cb5aa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: apache-2.0
tags:
- merge
model-index:
- name: CatPPT-base
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.26
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.72
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rishiraj/CatPPT-base
name: Open LLM Leaderboard
---
# 😼 CatPPT
Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat.
This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination.

## Model date
rishiraj/CatPPT was trained between 15th and 17th December, 2023.
## Evaluation
It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**.
|Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|
|------------------------------------|-------|-----|---------|-----|----------|----------|-----|
|**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**|
|Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11|
|openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96|
|meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84|
|Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02|
|mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03|
|mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73|
|meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06|
|tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94|
## Inference procedure
Here's how you can run the model using the pipeline() function from 🤗 Transformers:
```
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate"
},
{
"role": "user",
"content": "How many helicopters can a human eat in one sitting?"
}
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 128
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9947 | 0.16 | 3 | 2.0093 |
### Framework versions
- Transformers 4.36.1
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0
- PEFT 0.6.1
## Citation Information
```
@misc{rishiraj2023catppt,
author = {Rishiraj Acharya},
title = {CatPPT},
year = {2023},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rishiraj__CatPPT-base)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.25|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot) |86.64|
|MMLU (5-Shot) |65.26|
|TruthfulQA (0-shot) |61.72|
|Winogrande (5-shot) |81.29|
|GSM8k (5-shot) |70.66|
|