rishisim commited on
Commit
74a8023
1 Parent(s): e43dba3

submitting LunarLander-v2 first try

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 206.92 +/- 53.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7db8705c32e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7db8705c3370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7db8705c3400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7db8705c3490>", "_build": "<function ActorCriticPolicy._build at 0x7db8705c3520>", "forward": "<function ActorCriticPolicy.forward at 0x7db8705c35b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7db8705c3640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7db8705c36d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7db8705c3760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7db8705c37f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7db8705c3880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7db8705c3910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7db87075f300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717364076371537963, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZABgAAAAAAANpgMr5SkJW7ktOJO0NQyTiGNeQ8SimgugAAgD8AAIA/ACyvu2e+uj9+pdK9CSmUPp6Alzvm9Yk9AAAAAAAAAAAzI586e9KjuqUgfzm8ZpY2GxmdOorLk7gAAIA/AACAP9r3gb0mLrQ/uoUzvhK1eL55kIS9noOevQAAAAAAAAAAzSwGulz3JrqW3o47/8UZN3+nMzsMtBM2AACAPwAAgD+zad49riOfuk5VfruEzFs4gLcAu8o3DjgAAIA/AACAP02hMT7s9eI61rWmOVtnLjXR/m48ajLBuAAAgD8AAIA/OlInvim8cTnCWTe7ipAtvEwGo7t+YRg9AACAPwAAAADzYbW9e7KBuhIM7zpimB+2utmQu5ueCboAAAAAAACAP6aZqL3DQVG69JqUO5E4tzY2O7I60FavugAAgD8AAIA/M9CiPK6lgLpoa8A8EQyAvI7xF7xzR2C9AACAPwAAgD9ware+f5baPvU8RDxuBL++Pm82PUqYHD0AAAAAAAAAAJpe8L2hocA9nQR0PeL6g74ToJE8DAOAOwAAAAAAAAAAhrJivq5ciDsCV2m8MRyOOW2hDr1F/3+6AACAPwAAgD9zfE0+lvIwP4iOeb4xbVu+2YG6vJ3lB74AAAAAAAAAAJqSRj7hBuU7WhWtOovHtbcHw409nKgiOQAAgD8AAIA/AGR6PI/mFLpNuES7HmVHNkzhxTvOkiw6AACAPwAAgD/M4ji/Ul4Bvqygmzjuvis3JuJIPlx9DLgAAIA/AACAP81b8rzd1rI/1q+TvbO6Qr4/ati9bjo0vgAAAAAAAAAAM008vv4ymj+Gy9m+qrmVvpLGR75ezWO9AAAAAAAAAADmrMS9hfPYud4yyjq6GmE2h5tRO9iY7rkAAIA/AACAP9O4J742ciq8QH4CvPF8yDniTY494tDoOgAAgD8AAIA/AGhqPGYseD+urCS95tSsvsaB67wi6cW9AAAAAAAAAAAAKhq8XCtQut4+Fjx9/Am5JyCDuQ8dALgAAIA/AACAP5oxibsdtK0/tsf9Oj4Kgr5uOJe8m8AuvQAAAAAAAAAAM8javCmIiD+x6pE8boaOvso4U7oonVE9AAAAAAAAAAAgjhC+v7m8PpZKIL2Mtqm+x+FIPYhl1LwAAAAAAAAAAGb8BzyPchC61TX1uSkgz7WAl+Q6kY0NOQAAgD8AAIA/BrqfPsCZjz9kjaw+f3MivrFQUD6l9nc9AAAAAAAAAADNz8i8FPaAuuB127hmKxMztER7u6Bl+zcAAIA/AACAP20fOT4u0Yc9Kj5EvBGqkb46hdQ88N3+PQAAAAAAAAAAzYlHveyImT/wfVC+kprCviNQhzxgEUC9AAAAAAAAAACAwi0+uL6fu4tUY7vtqdk4ltIEvRZ5LDoAAIA/AACAP0M4pj6uaZ682jEIOoHgC7ic/NW9kvAfuQAAgD8AAIA/poWBvbg+mLlU04+5jQ8rtF1mEDuh3qc4AACAPwAAgD+T7kS+PRQBuyUqiLvjivu3jpHoO0I9nzoAAIA/AACAP5rA4r3q0I8/hvBIvvbEeb4J2Q2+uuiRvAAAAAAAAAAATQl1PSlwbbp21Ne8buWoPAktlzriMpI9AAAAAAAAAADN6k48e/Scupr58Lya6C29QcpzO/CClT0AAAAAAAAAAGZyR73hdIi62g+LO/lf6zY4Eoc6vgedugAAgD8AAIA/JZ3FvsoADr2OvSe7jHM3uVMM0D2uO0A6AACAPwAAgD+T6XM+ysKbP04puT6FP4S+gt1WPjI0LjoAAAAAAAAAADrIcb6UuhW9vp3svLzIgrv5sYM+qqdBPAAAgD8AAIA/jea5vSmgIrqAqOs8vO6JNEJsGDqiOgkzAACAPwAAAABDVpm+w+FKupCHELoj+1Q256asOog1JDkAAIA/AACAPwBEFL578si68PNgO8DnDDjPuzQ80xyDugAAgD8AAIA/mgvEvpIIhzzWJaG78Z8iPL+sOj1nMzk7AACAPwAAgD+aon29j6IZuhdUQzmguVg0WMb/OpgdYLgAAIA/AACAP80SOj02NFm8In7evaDkKjxySsa9gGIQPQAAgD8AAIA/mm0uPtfxRD+RiC8+r+2bvq+RGTxeopq8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSzJLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEcJdrO7g8+MAWyUS6uMAXSUR0CQvt7eVLSNdX2UKGgGR0A5c8uBczInaAdL7mgIR0CQw29oN/e+dX2UKGgGR0BjP/+VC5VfaAdN6ANoCEdAkMefjCHh0nV9lChoBkdATyQqAjIJaGgHTegDaAhHQJDKtcv/R3N1fZQoaAZHwGHxaE8JUo9oB03+AmgIR0CQysNahYeUdX2UKGgGR8At5X7tRekYaAdNDAFoCEdAkNaxx5s0pHV9lChoBkdAXxcyCWeHz2gHTegDaAhHQJDW6+pOvdN1fZQoaAZHQGBNKJVKf4BoB03oA2gIR0CQ1zeC04R3dX2UKGgGR0Bbb62F36hyaAdN6ANoCEdAkN1xQm/nGXV9lChoBkdAYM8zXSSeRWgHTegDaAhHQJDdnKW9lEt1fZQoaAZHQF5M20zCUHJoB03oA2gIR0CQ4Cq20AtGdX2UKGgGR0BXlpWaMJhOaAdN6ANoCEdAkOiBwyZa3nV9lChoBkdAYsXZuhsZYWgHTegDaAhHQJDrKiXY1511fZQoaAZHQFph9Net0V9oB03oA2gIR0CQ7A6+FlCkdX2UKGgGR0Bg9nHPu5SWaAdN6ANoCEdAkO4C+g13uHV9lChoBkdAWxcDTz/ZNGgHTegDaAhHQJD2QBikO7R1fZQoaAZHQFlHubI91U5oB03oA2gIR0CQ9+rN4Z/DdX2UKGgGR0Beuae05U97aAdN6ANoCEdAkQrWxptaZHV9lChoBkdAWLeaH9FWn2gHTegDaAhHQJEPyu2Zy+91fZQoaAZHQFbwnrIHTqloB03oA2gIR0CRFBD7IkqudX2UKGgGR0BfN3Zwn6VMaAdN6ANoCEdAkRZOP7vXsnV9lChoBkdAXVu0rsjVx2gHTegDaAhHQJEWapBHCoF1fZQoaAZHQC162fChvitoB00VAWgIR0CRGAFQEZBLdX2UKGgGR0BhLkw1zhgmaAdN6ANoCEdAkRglM/QjU3V9lChoBkdAWk2hi9ZieGgHTegDaAhHQJEc7Nr0rbx1fZQoaAZHv/5zposZpBZoB0veaAhHQJEfB1klNUR1fZQoaAZHQF5vTl1bJOpoB03oA2gIR0CRHy2/zreJdX2UKGgGR0BkY3vDxb0OaAdN6ANoCEdAkSsxU70WdnV9lChoBkdATBZEx7AtWmgHTegDaAhHQJEs4+LWI451fZQoaAZHQF+QscABDG9oB03oA2gIR0CRLRD4xk/bdX2UKGgGR0Bc6aeXiR4haAdN6ANoCEdAkTlpDu0CzXV9lChoBkdAW8RfoicG1WgHTegDaAhHQJFFaDL8rI51fZQoaAZHQAzWxhUipvRoB0v8aAhHQJFGaW6bvw51fZQoaAZHQFy3yZa3ZwpoB03oA2gIR0CRTG6Eal1sdX2UKGgGR0BeAjJyQxN7aAdN6ANoCEdAkU1FRHf/FXV9lChoBkdAWhPwG4ZuRGgHTegDaAhHQJFNlLf1pTN1fZQoaAZHQEXKVgQYk3VoB00JAWgIR0CRTdMoMKCydX2UKGgGR8AYXf4yoGY8aAdL7mgIR0CRjIJbt7a7dX2UKGgGR0BY2S4J/oaDaAdN6ANoCEdAkYzskdFOPHV9lChoBkdAYcWtkFwDNmgHTegDaAhHQJGRrI6r/851fZQoaAZHQF2Td1MdtEZoB03oA2gIR0CRkd+m3vx6dX2UKGgGR0ANebTc6/7BaAdLw2gIR0CRkpViF0xNdX2UKGgGR0BNJ03XI2fkaAdN6ANoCEdAkZQslkYoAnV9lChoBkdARur/hl18s2gHTegDaAhHQJGYcYJmdy11fZQoaAZHwBbBZyMkyDZoB03oA2gIR0CRmwWY4Qz2dX2UKGgGR0Bh+AqEvkBCaAdN6ANoCEdAkZ2KDoQnQnV9lChoBkdAWJj+5vtMPGgHTegDaAhHQJGfEh6jWTZ1fZQoaAZHQFrBnCO3lS1oB03oA2gIR0CRpCqzJIUbdX2UKGgGR0BbyOLiuMdcaAdN6ANoCEdAkahqXF98Z3V9lChoBkdAWOB/qgRK6GgHTegDaAhHQJGr9Sde6Zp1fZQoaAZHwDj0LronrptoB0vEaAhHQJGtrx0+1Sh1fZQoaAZHQFlKKhcqvvBoB03oA2gIR0CRsu9SuQp4dX2UKGgGR0BeTl14gRseaAdN6ANoCEdAkbksd5prUXV9lChoBkdAX9jPBzmwJWgHTegDaAhHQJG84aCL/CJ1fZQoaAZHQGHSPI4lyBFoB03oA2gIR0CRvzokAxSHdX2UKGgGR0BPg5f2K2roaAdN6ANoCEdAkb+fEfkmyHV9lChoBkdAXKg/NZ/0/WgHTegDaAhHQJHBjl4keIV1fZQoaAZHQAi8hC+lCTloB0u9aAhHQJHC+04R28t1fZQoaAZHQGQ0rpaA4GVoB03oA2gIR0CRxnRFI/Z/dX2UKGgGR0BfEPShJyyVaAdN6ANoCEdAkcsitJWeYnV9lChoBkdAXp8eEIw/PmgHTegDaAhHQJHOenEVFhJ1fZQoaAZHQF9DornTy8VoB03oA2gIR0CR0c11GLDRdX2UKGgGR0BhMNjAi3XqaAdN6ANoCEdAkdHc1n/T9nV9lChoBkdAVgS/N7jT8mgHTegDaAhHQJHc4ajvd/J1fZQoaAZHQGMNVSwW30BoB03oA2gIR0CR3Q1stTUBdX2UKGgGR0Be6nAuZkTYaAdN6ANoCEdAkd1SsGPgenV9lChoBkdAYsBAAQxvemgHTegDaAhHQJHiCIcinpB1fZQoaAZHQF4dKyfL9uRoB03oA2gIR0CR5SBwdbPhdX2UKGgGRz/SBSk0rK/3aAdNFQFoCEdAkewfldTo+3V9lChoBkdAYVJfR/mT1WgHTegDaAhHQJHztAQg9vF1fZQoaAZHQF7lNnXd0q9oB03oA2gIR0CR97W5paicdX2UKGgGR0BefdbkfcN6aAdN6ANoCEdAkflILLIPsnV9lChoBkdAQIFiMHbAUWgHTTEBaAhHQJH+U9W6shh1fZQoaAZHQGHjtdRiw0RoB03oA2gIR0CSBDRgZ0jkdX2UKGgGR0BgBRe/pMYeaAdN6ANoCEdAkgYFJQLuyHV9lChoBkfABSYIjW07bWgHS/9oCEdAkgpHrQgLZ3V9lChoBkfAN6h8c+7lJmgHS/ZoCEdAkhRE9ECvHXV9lChoBkdAXKJXjlxOtWgHTegDaAhHQJIXmLYPGyZ1fZQoaAZHQGLH69K28ZloB03oA2gIR0CSGqiVjZtfdX2UKGgGR0BcRHAuZkTYaAdN6ANoCEdAkh7VK5Cng3V9lChoBkdAYw0POpsGgWgHTegDaAhHQJIe6dMCcPR1fZQoaAZHQFk/IBBAv+RoB03oA2gIR0CSIC00FbFCdX2UKGgGR0A9H0Zm7J4jaAdL9WgIR0CSIR2CuloEdX2UKGgGR0Bb/UI1LrX2aAdN6ANoCEdAkiYLhR64UnV9lChoBkdAYh4gUUO/cmgHTegDaAhHQJIpkbm2b5N1fZQoaAZHQF4upnpSrHVoB03oA2gIR0CSOEf3vhIfdX2UKGgGR0Bbhn0btJFtaAdN6ANoCEdAkjpI86mwaHV9lChoBkdAZPCczZYgaGgHTegDaAhHQJJH8vexfOV1fZQoaAZHQGnG4A80UGpoB02NA2gIR0CSSVqNZNfxdX2UKGgGR0AWmh37k4m1aAdNFQFoCEdAklChfa6BiHV9lChoBkdAYSgY1He7+WgHTegDaAhHQJJUmRhc7hh1fZQoaAZHQGCQvvrnkktoB03oA2gIR0CSVcEEC/47dX2UKGgGR0Aqg/0ulGgBaAdNHwFoCEdAklfnw5NoJ3V9lChoBkdAaC4eMhouf2gHTY8DaAhHQJJZbxPO6d11fZQoaAZHQGEFdSde6ZpoB03oA2gIR0CSXLO9FnZkdX2UKGgGR0BeTxbW3BpIaAdN6ANoCEdAkl3Xxe9i+nV9lChoBkdAVhDQ6ZH/cWgHTegDaAhHQJJeEdU83dd1fZQoaAZHQFzP3VkMCtBoB03oA2gIR0CSYINpM6BAdX2UKGgGR0A3IjFyaNMoaAdNEQFoCEdAkmFrpV0cO3V9lChoBkdAL1TWwu/UOWgHTSkBaAhHQJJlN7dBSk11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 88, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 50, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:138dd6ccb9af68182a0fc03ef043e19a94a834c2a9d8295763970dd5cace7d29
3
+ size 149562
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7db8705c32e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7db8705c3370>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7db8705c3400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7db8705c3490>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7db8705c3520>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7db8705c35b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7db8705c3640>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7db8705c36d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7db8705c3760>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7db8705c37f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7db8705c3880>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7db8705c3910>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7db87075f300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1024000,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1717364076371537963,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVtQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZABgAAAAAAANpgMr5SkJW7ktOJO0NQyTiGNeQ8SimgugAAgD8AAIA/ACyvu2e+uj9+pdK9CSmUPp6Alzvm9Yk9AAAAAAAAAAAzI586e9KjuqUgfzm8ZpY2GxmdOorLk7gAAIA/AACAP9r3gb0mLrQ/uoUzvhK1eL55kIS9noOevQAAAAAAAAAAzSwGulz3JrqW3o47/8UZN3+nMzsMtBM2AACAPwAAgD+zad49riOfuk5VfruEzFs4gLcAu8o3DjgAAIA/AACAP02hMT7s9eI61rWmOVtnLjXR/m48ajLBuAAAgD8AAIA/OlInvim8cTnCWTe7ipAtvEwGo7t+YRg9AACAPwAAAADzYbW9e7KBuhIM7zpimB+2utmQu5ueCboAAAAAAACAP6aZqL3DQVG69JqUO5E4tzY2O7I60FavugAAgD8AAIA/M9CiPK6lgLpoa8A8EQyAvI7xF7xzR2C9AACAPwAAgD9ware+f5baPvU8RDxuBL++Pm82PUqYHD0AAAAAAAAAAJpe8L2hocA9nQR0PeL6g74ToJE8DAOAOwAAAAAAAAAAhrJivq5ciDsCV2m8MRyOOW2hDr1F/3+6AACAPwAAgD9zfE0+lvIwP4iOeb4xbVu+2YG6vJ3lB74AAAAAAAAAAJqSRj7hBuU7WhWtOovHtbcHw409nKgiOQAAgD8AAIA/AGR6PI/mFLpNuES7HmVHNkzhxTvOkiw6AACAPwAAgD/M4ji/Ul4Bvqygmzjuvis3JuJIPlx9DLgAAIA/AACAP81b8rzd1rI/1q+TvbO6Qr4/ati9bjo0vgAAAAAAAAAAM008vv4ymj+Gy9m+qrmVvpLGR75ezWO9AAAAAAAAAADmrMS9hfPYud4yyjq6GmE2h5tRO9iY7rkAAIA/AACAP9O4J742ciq8QH4CvPF8yDniTY494tDoOgAAgD8AAIA/AGhqPGYseD+urCS95tSsvsaB67wi6cW9AAAAAAAAAAAAKhq8XCtQut4+Fjx9/Am5JyCDuQ8dALgAAIA/AACAP5oxibsdtK0/tsf9Oj4Kgr5uOJe8m8AuvQAAAAAAAAAAM8javCmIiD+x6pE8boaOvso4U7oonVE9AAAAAAAAAAAgjhC+v7m8PpZKIL2Mtqm+x+FIPYhl1LwAAAAAAAAAAGb8BzyPchC61TX1uSkgz7WAl+Q6kY0NOQAAgD8AAIA/BrqfPsCZjz9kjaw+f3MivrFQUD6l9nc9AAAAAAAAAADNz8i8FPaAuuB127hmKxMztER7u6Bl+zcAAIA/AACAP20fOT4u0Yc9Kj5EvBGqkb46hdQ88N3+PQAAAAAAAAAAzYlHveyImT/wfVC+kprCviNQhzxgEUC9AAAAAAAAAACAwi0+uL6fu4tUY7vtqdk4ltIEvRZ5LDoAAIA/AACAP0M4pj6uaZ682jEIOoHgC7ic/NW9kvAfuQAAgD8AAIA/poWBvbg+mLlU04+5jQ8rtF1mEDuh3qc4AACAPwAAgD+T7kS+PRQBuyUqiLvjivu3jpHoO0I9nzoAAIA/AACAP5rA4r3q0I8/hvBIvvbEeb4J2Q2+uuiRvAAAAAAAAAAATQl1PSlwbbp21Ne8buWoPAktlzriMpI9AAAAAAAAAADN6k48e/Scupr58Lya6C29QcpzO/CClT0AAAAAAAAAAGZyR73hdIi62g+LO/lf6zY4Eoc6vgedugAAgD8AAIA/JZ3FvsoADr2OvSe7jHM3uVMM0D2uO0A6AACAPwAAgD+T6XM+ysKbP04puT6FP4S+gt1WPjI0LjoAAAAAAAAAADrIcb6UuhW9vp3svLzIgrv5sYM+qqdBPAAAgD8AAIA/jea5vSmgIrqAqOs8vO6JNEJsGDqiOgkzAACAPwAAAABDVpm+w+FKupCHELoj+1Q256asOog1JDkAAIA/AACAPwBEFL578si68PNgO8DnDDjPuzQ80xyDugAAgD8AAIA/mgvEvpIIhzzWJaG78Z8iPL+sOj1nMzk7AACAPwAAgD+aon29j6IZuhdUQzmguVg0WMb/OpgdYLgAAIA/AACAP80SOj02NFm8In7evaDkKjxySsa9gGIQPQAAgD8AAIA/mm0uPtfxRD+RiC8+r+2bvq+RGTxeopq8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSzJLCIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksyhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.02400000000000002,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEcJdrO7g8+MAWyUS6uMAXSUR0CQvt7eVLSNdX2UKGgGR0A5c8uBczInaAdL7mgIR0CQw29oN/e+dX2UKGgGR0BjP/+VC5VfaAdN6ANoCEdAkMefjCHh0nV9lChoBkdATyQqAjIJaGgHTegDaAhHQJDKtcv/R3N1fZQoaAZHwGHxaE8JUo9oB03+AmgIR0CQysNahYeUdX2UKGgGR8At5X7tRekYaAdNDAFoCEdAkNaxx5s0pHV9lChoBkdAXxcyCWeHz2gHTegDaAhHQJDW6+pOvdN1fZQoaAZHQGBNKJVKf4BoB03oA2gIR0CQ1zeC04R3dX2UKGgGR0Bbb62F36hyaAdN6ANoCEdAkN1xQm/nGXV9lChoBkdAYM8zXSSeRWgHTegDaAhHQJDdnKW9lEt1fZQoaAZHQF5M20zCUHJoB03oA2gIR0CQ4Cq20AtGdX2UKGgGR0BXlpWaMJhOaAdN6ANoCEdAkOiBwyZa3nV9lChoBkdAYsXZuhsZYWgHTegDaAhHQJDrKiXY1511fZQoaAZHQFph9Net0V9oB03oA2gIR0CQ7A6+FlCkdX2UKGgGR0Bg9nHPu5SWaAdN6ANoCEdAkO4C+g13uHV9lChoBkdAWxcDTz/ZNGgHTegDaAhHQJD2QBikO7R1fZQoaAZHQFlHubI91U5oB03oA2gIR0CQ9+rN4Z/DdX2UKGgGR0Beuae05U97aAdN6ANoCEdAkQrWxptaZHV9lChoBkdAWLeaH9FWn2gHTegDaAhHQJEPyu2Zy+91fZQoaAZHQFbwnrIHTqloB03oA2gIR0CRFBD7IkqudX2UKGgGR0BfN3Zwn6VMaAdN6ANoCEdAkRZOP7vXsnV9lChoBkdAXVu0rsjVx2gHTegDaAhHQJEWapBHCoF1fZQoaAZHQC162fChvitoB00VAWgIR0CRGAFQEZBLdX2UKGgGR0BhLkw1zhgmaAdN6ANoCEdAkRglM/QjU3V9lChoBkdAWk2hi9ZieGgHTegDaAhHQJEc7Nr0rbx1fZQoaAZHv/5zposZpBZoB0veaAhHQJEfB1klNUR1fZQoaAZHQF5vTl1bJOpoB03oA2gIR0CRHy2/zreJdX2UKGgGR0BkY3vDxb0OaAdN6ANoCEdAkSsxU70WdnV9lChoBkdATBZEx7AtWmgHTegDaAhHQJEs4+LWI451fZQoaAZHQF+QscABDG9oB03oA2gIR0CRLRD4xk/bdX2UKGgGR0Bc6aeXiR4haAdN6ANoCEdAkTlpDu0CzXV9lChoBkdAW8RfoicG1WgHTegDaAhHQJFFaDL8rI51fZQoaAZHQAzWxhUipvRoB0v8aAhHQJFGaW6bvw51fZQoaAZHQFy3yZa3ZwpoB03oA2gIR0CRTG6Eal1sdX2UKGgGR0BeAjJyQxN7aAdN6ANoCEdAkU1FRHf/FXV9lChoBkdAWhPwG4ZuRGgHTegDaAhHQJFNlLf1pTN1fZQoaAZHQEXKVgQYk3VoB00JAWgIR0CRTdMoMKCydX2UKGgGR8AYXf4yoGY8aAdL7mgIR0CRjIJbt7a7dX2UKGgGR0BY2S4J/oaDaAdN6ANoCEdAkYzskdFOPHV9lChoBkdAYcWtkFwDNmgHTegDaAhHQJGRrI6r/851fZQoaAZHQF2Td1MdtEZoB03oA2gIR0CRkd+m3vx6dX2UKGgGR0ANebTc6/7BaAdLw2gIR0CRkpViF0xNdX2UKGgGR0BNJ03XI2fkaAdN6ANoCEdAkZQslkYoAnV9lChoBkdARur/hl18s2gHTegDaAhHQJGYcYJmdy11fZQoaAZHwBbBZyMkyDZoB03oA2gIR0CRmwWY4Qz2dX2UKGgGR0Bh+AqEvkBCaAdN6ANoCEdAkZ2KDoQnQnV9lChoBkdAWJj+5vtMPGgHTegDaAhHQJGfEh6jWTZ1fZQoaAZHQFrBnCO3lS1oB03oA2gIR0CRpCqzJIUbdX2UKGgGR0BbyOLiuMdcaAdN6ANoCEdAkahqXF98Z3V9lChoBkdAWOB/qgRK6GgHTegDaAhHQJGr9Sde6Zp1fZQoaAZHwDj0LronrptoB0vEaAhHQJGtrx0+1Sh1fZQoaAZHQFlKKhcqvvBoB03oA2gIR0CRsu9SuQp4dX2UKGgGR0BeTl14gRseaAdN6ANoCEdAkbksd5prUXV9lChoBkdAX9jPBzmwJWgHTegDaAhHQJG84aCL/CJ1fZQoaAZHQGHSPI4lyBFoB03oA2gIR0CRvzokAxSHdX2UKGgGR0BPg5f2K2roaAdN6ANoCEdAkb+fEfkmyHV9lChoBkdAXKg/NZ/0/WgHTegDaAhHQJHBjl4keIV1fZQoaAZHQAi8hC+lCTloB0u9aAhHQJHC+04R28t1fZQoaAZHQGQ0rpaA4GVoB03oA2gIR0CRxnRFI/Z/dX2UKGgGR0BfEPShJyyVaAdN6ANoCEdAkcsitJWeYnV9lChoBkdAXp8eEIw/PmgHTegDaAhHQJHOenEVFhJ1fZQoaAZHQF9DornTy8VoB03oA2gIR0CR0c11GLDRdX2UKGgGR0BhMNjAi3XqaAdN6ANoCEdAkdHc1n/T9nV9lChoBkdAVgS/N7jT8mgHTegDaAhHQJHc4ajvd/J1fZQoaAZHQGMNVSwW30BoB03oA2gIR0CR3Q1stTUBdX2UKGgGR0Be6nAuZkTYaAdN6ANoCEdAkd1SsGPgenV9lChoBkdAYsBAAQxvemgHTegDaAhHQJHiCIcinpB1fZQoaAZHQF4dKyfL9uRoB03oA2gIR0CR5SBwdbPhdX2UKGgGRz/SBSk0rK/3aAdNFQFoCEdAkewfldTo+3V9lChoBkdAYVJfR/mT1WgHTegDaAhHQJHztAQg9vF1fZQoaAZHQF7lNnXd0q9oB03oA2gIR0CR97W5paicdX2UKGgGR0BefdbkfcN6aAdN6ANoCEdAkflILLIPsnV9lChoBkdAQIFiMHbAUWgHTTEBaAhHQJH+U9W6shh1fZQoaAZHQGHjtdRiw0RoB03oA2gIR0CSBDRgZ0jkdX2UKGgGR0BgBRe/pMYeaAdN6ANoCEdAkgYFJQLuyHV9lChoBkfABSYIjW07bWgHS/9oCEdAkgpHrQgLZ3V9lChoBkfAN6h8c+7lJmgHS/ZoCEdAkhRE9ECvHXV9lChoBkdAXKJXjlxOtWgHTegDaAhHQJIXmLYPGyZ1fZQoaAZHQGLH69K28ZloB03oA2gIR0CSGqiVjZtfdX2UKGgGR0BcRHAuZkTYaAdN6ANoCEdAkh7VK5Cng3V9lChoBkdAYw0POpsGgWgHTegDaAhHQJIe6dMCcPR1fZQoaAZHQFk/IBBAv+RoB03oA2gIR0CSIC00FbFCdX2UKGgGR0A9H0Zm7J4jaAdL9WgIR0CSIR2CuloEdX2UKGgGR0Bb/UI1LrX2aAdN6ANoCEdAkiYLhR64UnV9lChoBkdAYh4gUUO/cmgHTegDaAhHQJIpkbm2b5N1fZQoaAZHQF4upnpSrHVoB03oA2gIR0CSOEf3vhIfdX2UKGgGR0Bbhn0btJFtaAdN6ANoCEdAkjpI86mwaHV9lChoBkdAZPCczZYgaGgHTegDaAhHQJJH8vexfOV1fZQoaAZHQGnG4A80UGpoB02NA2gIR0CSSVqNZNfxdX2UKGgGR0AWmh37k4m1aAdNFQFoCEdAklChfa6BiHV9lChoBkdAYSgY1He7+WgHTegDaAhHQJJUmRhc7hh1fZQoaAZHQGCQvvrnkktoB03oA2gIR0CSVcEEC/47dX2UKGgGR0Aqg/0ulGgBaAdNHwFoCEdAklfnw5NoJ3V9lChoBkdAaC4eMhouf2gHTY8DaAhHQJJZbxPO6d11fZQoaAZHQGEFdSde6ZpoB03oA2gIR0CSXLO9FnZkdX2UKGgGR0BeTxbW3BpIaAdN6ANoCEdAkl3Xxe9i+nV9lChoBkdAVhDQ6ZH/cWgHTegDaAhHQJJeEdU83dd1fZQoaAZHQFzP3VkMCtBoB03oA2gIR0CSYINpM6BAdX2UKGgGR0A3IjFyaNMoaAdNEQFoCEdAkmFrpV0cO3V9lChoBkdAL1TWwu/UOWgHTSkBaAhHQJJlN7dBSk11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 88,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 50,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e693eda7b88fcc24542248d2c0bf9f8b0e0e52e734ed69fd550bf0b30df0c3c
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a02132b9da5967aad8ab390a1c5b1afd4a805e0ee90804203653322ef89d45d1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 206.92077030000002, "std_reward": 53.52637924154386, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-02T21:59:18.956929"}