rizqatasyaa commited on
Commit
dcfeff6
·
verified ·
1 Parent(s): 0006b07

Model save

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [textattack/roberta-base-ag-news](https://huggingface.co/textattack/roberta-base-ag-news) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2200
23
- - Accuracy: 0.9443
24
- - F1: 0.9444
25
- - Precision: 0.9444
26
- - Recall: 0.9443
27
 
28
  ## Model description
29
 
@@ -49,13 +49,14 @@ The following hyperparameters were used during training:
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_steps: 500
52
- - num_epochs: 1
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
- | 0.108 | 1.0 | 3750 | 0.2200 | 0.9443 | 0.9444 | 0.9444 | 0.9443 |
 
59
 
60
 
61
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [textattack/roberta-base-ag-news](https://huggingface.co/textattack/roberta-base-ag-news) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.2492
23
+ - Accuracy: 0.9457
24
+ - F1: 0.9456
25
+ - Precision: 0.9456
26
+ - Recall: 0.9457
27
 
28
  ## Model description
29
 
 
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
  - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 2
53
 
54
  ### Training results
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.073 | 1.0 | 3750 | 0.2088 | 0.9417 | 0.9416 | 0.9419 | 0.9417 |
59
+ | 0.0576 | 2.0 | 7500 | 0.2492 | 0.9457 | 0.9456 | 0.9456 | 0.9457 |
60
 
61
 
62
  ### Framework versions