--- base_model: textattack/roberta-base-ag-news tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-base-ag-news results: [] --- # roberta-base-ag-news This model is a fine-tuned version of [textattack/roberta-base-ag-news](https://huggingface.co/textattack/roberta-base-ag-news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2492 - Accuracy: 0.9457 - F1: 0.9456 - Precision: 0.9456 - Recall: 0.9457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.073 | 1.0 | 3750 | 0.2088 | 0.9417 | 0.9416 | 0.9419 | 0.9417 | | 0.0576 | 2.0 | 7500 | 0.2492 | 0.9457 | 0.9456 | 0.9456 | 0.9457 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1