End of training
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: distilbert-q-classifier-3
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilbert-q-classifier-3
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3192
|
21 |
+
- Accuracy: 0.9238
|
22 |
+
- Precision Weighted: 0.9240
|
23 |
+
- Recall Weighted: 0.9238
|
24 |
+
- F1 Weighted: 0.9239
|
25 |
+
- Precision Macro: 0.9240
|
26 |
+
- Recall Macro: 0.9241
|
27 |
+
- F1 Macro: 0.9240
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:|
|
58 |
+
| No log | 1.0 | 68 | 0.4096 | 0.8558 | 0.8587 | 0.8558 | 0.8567 | 0.8588 | 0.8561 | 0.8569 |
|
59 |
+
| No log | 2.0 | 136 | 0.3029 | 0.8963 | 0.8959 | 0.8963 | 0.8959 | 0.8965 | 0.8964 | 0.8962 |
|
60 |
+
| No log | 3.0 | 204 | 0.2803 | 0.8914 | 0.8935 | 0.8914 | 0.8898 | 0.8942 | 0.8911 | 0.8900 |
|
61 |
+
| No log | 4.0 | 272 | 0.2651 | 0.9109 | 0.9132 | 0.9109 | 0.9114 | 0.9135 | 0.9105 | 0.9113 |
|
62 |
+
| No log | 5.0 | 340 | 0.2840 | 0.9222 | 0.9247 | 0.9222 | 0.9226 | 0.9241 | 0.9231 | 0.9228 |
|
63 |
+
| No log | 6.0 | 408 | 0.2939 | 0.9254 | 0.9253 | 0.9254 | 0.9253 | 0.9252 | 0.9258 | 0.9254 |
|
64 |
+
| No log | 7.0 | 476 | 0.3011 | 0.9238 | 0.9242 | 0.9238 | 0.9239 | 0.9241 | 0.9242 | 0.9241 |
|
65 |
+
| 0.2181 | 8.0 | 544 | 0.3170 | 0.9190 | 0.9199 | 0.9190 | 0.9192 | 0.9201 | 0.9186 | 0.9191 |
|
66 |
+
| 0.2181 | 9.0 | 612 | 0.3135 | 0.9222 | 0.9224 | 0.9222 | 0.9223 | 0.9225 | 0.9220 | 0.9223 |
|
67 |
+
| 0.2181 | 10.0 | 680 | 0.3192 | 0.9238 | 0.9240 | 0.9238 | 0.9239 | 0.9240 | 0.9241 | 0.9240 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.43.3
|
73 |
+
- Pytorch 2.3.1
|
74 |
+
- Datasets 2.20.0
|
75 |
+
- Tokenizers 0.19.1
|