rk68 commited on
Commit
4a73341
·
verified ·
1 Parent(s): 53527f0

End of training

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: distilbert-q-classifier-3
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distilbert-q-classifier-3
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3192
21
+ - Accuracy: 0.9238
22
+ - Precision Weighted: 0.9240
23
+ - Recall Weighted: 0.9238
24
+ - F1 Weighted: 0.9239
25
+ - Precision Macro: 0.9240
26
+ - Recall Macro: 0.9241
27
+ - F1 Macro: 0.9240
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:|
58
+ | No log | 1.0 | 68 | 0.4096 | 0.8558 | 0.8587 | 0.8558 | 0.8567 | 0.8588 | 0.8561 | 0.8569 |
59
+ | No log | 2.0 | 136 | 0.3029 | 0.8963 | 0.8959 | 0.8963 | 0.8959 | 0.8965 | 0.8964 | 0.8962 |
60
+ | No log | 3.0 | 204 | 0.2803 | 0.8914 | 0.8935 | 0.8914 | 0.8898 | 0.8942 | 0.8911 | 0.8900 |
61
+ | No log | 4.0 | 272 | 0.2651 | 0.9109 | 0.9132 | 0.9109 | 0.9114 | 0.9135 | 0.9105 | 0.9113 |
62
+ | No log | 5.0 | 340 | 0.2840 | 0.9222 | 0.9247 | 0.9222 | 0.9226 | 0.9241 | 0.9231 | 0.9228 |
63
+ | No log | 6.0 | 408 | 0.2939 | 0.9254 | 0.9253 | 0.9254 | 0.9253 | 0.9252 | 0.9258 | 0.9254 |
64
+ | No log | 7.0 | 476 | 0.3011 | 0.9238 | 0.9242 | 0.9238 | 0.9239 | 0.9241 | 0.9242 | 0.9241 |
65
+ | 0.2181 | 8.0 | 544 | 0.3170 | 0.9190 | 0.9199 | 0.9190 | 0.9192 | 0.9201 | 0.9186 | 0.9191 |
66
+ | 0.2181 | 9.0 | 612 | 0.3135 | 0.9222 | 0.9224 | 0.9222 | 0.9223 | 0.9225 | 0.9220 | 0.9223 |
67
+ | 0.2181 | 10.0 | 680 | 0.3192 | 0.9238 | 0.9240 | 0.9238 | 0.9239 | 0.9240 | 0.9241 | 0.9240 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.43.3
73
+ - Pytorch 2.3.1
74
+ - Datasets 2.20.0
75
+ - Tokenizers 0.19.1