rkdaldus commited on
Commit
d3c07ea
Β·
verified Β·
1 Parent(s): 2725cc1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -196
README.md CHANGED
@@ -1,199 +1,84 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ base_model:
4
+ - monologg/kobert
5
  ---
6
+ # KoBERT 기반 ν•œκ΅­μ–΄ 감정 λΆ„λ₯˜ λͺ¨λΈ
7
+
8
+ 이 ν”„λ‘œμ νŠΈλŠ” **ν•œκ΅­μ–΄ ν…μŠ€νŠΈμ˜ 감정을 λΆ„λ₯˜**ν•˜λŠ” KoBERT 기반의 감정 λΆ„λ₯˜ λͺ¨λΈμ„ ν•™μŠ΅ν•˜κ³  ν™œμš©ν•˜λŠ” μ½”λ“œλ₯Ό ν¬ν•¨ν•©λ‹ˆλ‹€. 이 λͺ¨λΈμ€ μž…λ ₯된 ν…μŠ€νŠΈκ°€ **λΆ„λ…Έ(Anger), 두렀움(Fear), 기쁨(Happy), ν‰μ˜¨(Tender), μŠ¬ν””(Sad)** 쀑 μ–΄λ–€ 감정에 ν•΄λ‹Ήν•˜λŠ”μ§€λ₯Ό μ˜ˆμΈ‘ν•©λ‹ˆλ‹€.
9
+
10
+ ## 1. λͺ¨λΈ ν•™μŠ΅ κ³Όμ •
11
+
12
+ ### Colab ν™˜κ²½ μ„€μ • 및 데이터 μ€€λΉ„
13
+ 1. **ν•„μš” 라이브러리 μ„€μΉ˜**:
14
+ `transformers`, `datasets`, `torch`, `pandas`, `scikit-learn` 라이브러리λ₯Ό μ„€μΉ˜ν•©λ‹ˆλ‹€.
15
+
16
+ 2. **데이터 뢈러였기**:
17
+ ai hub 에 λ“±λ‘λœ ν•œκ΅­μ–΄ 감성 λŒ€ν™” λ°μ΄ν„°λ‘œλΆ€ν„° 감정 λΆ„λ₯˜μš© CSV νŒŒμΌμ„ λΆˆλŸ¬μ˜΅λ‹ˆλ‹€.
18
+
19
+ 3. **데이터셋 μ€€λΉ„**:
20
+ - **ν•™μŠ΅/검증 데이터 λΆ„ν• **: 80%λŠ” ν•™μŠ΅ λ°μ΄ν„°λ‘œ, 20%λŠ” 검증 λ°μ΄ν„°λ‘œ μ‚¬μš©.
21
+ - **HuggingFace Dataset ν˜•μ‹ λ³€ν™˜**: Pandas DataFrame을 HuggingFace `Dataset`으둜 λ³€ν™˜.
22
+ - **λ ˆμ΄λΈ” 컬럼λͺ… λ³€κ²½**: 감정 λ ˆμ΄λΈ”μ„ λ‚˜νƒ€λ‚΄λŠ” `label_int` μ»¬λŸΌμ„ `labels`둜 λ³€κ²½.
23
+ - **데이터 토큰화**: `monologg/kobert` ν† ν¬λ‚˜μ΄μ €λ₯Ό μ΄μš©ν•΄ μž…λ ₯ ν…μŠ€νŠΈλ₯Ό 토큰화.
24
+ - **ν˜•μ‹ λ³€ν™˜**: `input_ids`, `attention_mask`, `labels`만 남겨 ν•™μŠ΅ μ€€λΉ„ μ™„λ£Œ.
25
+
26
+ 4. **λͺ¨λΈ 및 ν•™μŠ΅ μ„€μ •**:
27
+ - **λͺ¨λΈ**: `monologg/kobert` λͺ¨λΈμ„ λΆˆλŸ¬μ™€ 5개의 감정 λ ˆμ΄λΈ”μ„ λΆ„λ₯˜ν•˜λ„둝 μ„€μ •.
28
+ - **ν•™μŠ΅ ν•˜μ΄νΌνŒŒλΌλ―Έν„°**:
29
+ - `learning_rate=2e-5`, `num_train_epochs=10`, `batch_size=16`.
30
+ - F1 μŠ€μ½”μ–΄λ₯Ό 기반으둜 베슀트 λͺ¨λΈ μ €μž₯.
31
+ - Early stopping 적용.
32
+
33
+ 5. **ν•™μŠ΅ 진행 및 λͺ¨λΈ μ €μž₯**:
34
+ - ν•™μŠ΅ μ™„λ£Œ ν›„ λͺ¨λΈμ„ Google Drive에 μ €μž₯.
35
+
36
+ ### μ„±λŠ₯ 평가 및 ν…ŒμŠ€νŠΈ
37
+ - **평가 μ§€ν‘œ**: Accuracy, F1 score (macro, weighted) 계산.
38
+ - **ν…ŒμŠ€νŠΈ 데이터 평가**: ν•™μŠ΅λœ λͺ¨λΈμ„ μ΄μš©ν•΄ ν…ŒμŠ€νŠΈ 데이터셋 평가.
39
+
40
+ ## 2. λͺ¨λΈ μ‚¬μš© 방법
41
+
42
+ ### 사전 μ€€λΉ„
43
+ - HuggingFace Hubμ—μ„œ ν•™μŠ΅λœ λͺ¨λΈμ„ λΆˆλŸ¬μ™€ μ‚¬μš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
44
+ - λͺ¨λΈ 및 ν† ν¬λ‚˜μ΄μ €λŠ” `monologg/kobert` 기반이며, λΆ„λ₯˜ λ ˆμ΄λΈ”μ€ λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:
45
+ - **Anger**: 😑
46
+ - **Fear**: 😨
47
+ - **Happy**: 😊
48
+ - **Tender**: πŸ₯°
49
+ - **Sad**: 😒
50
+
51
+ ### μ‚¬μš© μ˜ˆμ‹œ
52
+ 1. **λ‹¨μˆœ λ¬Έμž₯ μž…λ ₯ 감정 뢄석**:
53
+ - μ‚¬μš©μžκ°€ μž…λ ₯ν•œ ν…μŠ€νŠΈμ— λŒ€ν•΄ λͺ¨λΈμ΄ 감정을 μ˜ˆμΈ‘ν•˜κ³ , 각 κ°μ •μ˜ ν™•λ₯ μ„ ν•¨κ»˜ 좜λ ₯ν•©λ‹ˆλ‹€.
54
+
55
+ 2. **μ—‘μ…€ νŒŒμΌμ—μ„œ 감정 뢄석**:
56
+ - μ—‘μ…€ νŒŒμΌμ—μ„œ μ§€μ •ν•œ ν…μŠ€νŠΈ μ—΄κ³Ό ν–‰ λ²”μœ„λ₯Ό 읽어와, ν•΄λ‹Ή ν…μŠ€νŠΈλ“€μ— λŒ€ν•΄ 감정을 λΆ„λ₯˜ν•˜κ³  κ²°κ³Όλ₯Ό 좜λ ₯ν•©λ‹ˆλ‹€.
57
+
58
+ ### μ½”λ“œ μ‚¬μš© μ˜ˆμ‹œ
59
+ ```python
60
+ # ν† ν¬λ‚˜μ΄μ € 및 λͺ¨λΈ λ‘œλ“œ
61
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
62
+
63
+ # KoBERT ν† ν¬λ‚˜μ΄μ €μ™€ λͺ¨λΈ λ‘œλ“œ
64
+ tokenizer = AutoTokenizer.from_pretrained("monologg/kobert", trust_remote_code=True)
65
+ model = AutoModelForSequenceClassification.from_pretrained("rkdaldus/ko-sent5-classification")
66
+
67
+ # μ‚¬μš©μž μž…λ ₯ ν…μŠ€νŠΈ 감정 뢄석
68
+ text = "였늘 정말 행볡해!"
69
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
70
+ with torch.no_grad():
71
+ outputs = model(**inputs)
72
+ predicted_label = torch.argmax(outputs.logits, dim=1).item()
73
+
74
+ # 감정 λ ˆμ΄λΈ” μ •μ˜
75
+ emotion_labels = {
76
+ 0: ("Angry", "😑"),
77
+ 1: ("Fear", "😨"),
78
+ 2: ("Happy", "😊"),
79
+ 3: ("Tender", "πŸ₯°"),
80
+ 4: ("Sad", "😒")
81
+ }
82
+
83
+ # 예츑된 감정 좜λ ₯
84
+ print(f"예츑된 감정: {emotion_labels[predicted_label][0]} {emotion_labels[predicted_label][1]}")