rkoh commited on
Commit
a50119d
·
verified ·
1 Parent(s): 04ebcd0

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1598 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ metrics:
4
+ - accuracy
5
+ pipeline_tag: text-classification
6
+ tags:
7
+ - setfit
8
+ - sentence-transformers
9
+ - text-classification
10
+ - generated_from_setfit_trainer
11
+ widget:
12
+ - text: If the Probable Cause Committee determines that charges should be filed, the
13
+ respondent is notified of the specific nature of the charges and the Board's proposed
14
+ settlement of the issues. Said notice shall be sent by certified mail, return
15
+ receipt requested, to the respondent's last known address. If a hearing is to
16
+ be scheduled, the notice shall be sent by certified mail, return receipt requested,
17
+ to the respondent's last known address not less than ten (10) days before the
18
+ date of the scheduled hearing. The Board will conduct the hearing with the assistance
19
+ of a hearing officer, who will hear all competent and relevant evidence in support
20
+ of the charges. The hearing will be conducted in accordance with the Alabama Administrative
21
+ Procedures Act, Section 41-22-13, Code of Ala. 1975. Upon conclusion of the hearing,
22
+ the members of the Board (excluding the Probable Cause Committee Board member)
23
+ will determine the appropriate action to be taken, and shall notify, or cause
24
+ to be notified, the respondent of such action. If the Board suspends or revokes
25
+ a registration, or issues a reprimand or fine against the respondent, he or she
26
+ may appeal to the Circuit Court of Montgomery County, Alabama.
27
+ - text: Definitions governing the construction of this subchapter can be found in
28
+ Chapter 1, Section 790 of this subdivision.
29
+ - text: Any decision to deny, restrict or limit an inmate of any right, service, item
30
+ or article, guaranteed an inmate by the provisions of this Part, shall be done
31
+ in accordance with section 7075.5 of this Title.
32
+ - text: 'After a port drayage motor carrier has been placed on the public list, the
33
+ Labor Commissioner shall remove the motor carrier from the list within 15 business
34
+ days upon the following: (a) The Labor Commissioner''s Office determines after
35
+ review of submitted documents specified in subsections (1), (2), and (3) that
36
+ there has been full payment of an unsatisfied judgment or any other final liability
37
+ for all violations identified in Labor Code sections 2810.4(b)(1)(A)-(B) or that
38
+ the port drayage motor carrier has entered into an approved settlement dispensing
39
+ of the judgment or liability; or, in the case of a subsequent liability against
40
+ a prior offender, the prior offender prevailed in an appeal. (1) A port drayage
41
+ motor carrier shall present such proof by submitting a written statement under
42
+ penalty of perjury stating the basis for removal of the listing, along with the
43
+ accompanying documentation specified in subsections (2) and (3), as applicable,
44
+ by mail to the Labor Commissioner''s Office, Attn: SB 1402 Proof of Payment or
45
+ Settlement, 1500 Hughes Way, Suite C-202, Long Beach, CA 90810, or electronically
46
+ in pdf format via email to: [email protected]. (2) For purposes of sufficiently
47
+ documenting the payment or satisfaction of a judgment, tax assessment, or tax
48
+ lien or a citation or ODA, the port drayage motor carrier shall identify and provide
49
+ the documentation required under Section 13878, as applicable. (3) For purposes
50
+ of sufficiently documenting a disposition regarding a port drayage motor carrier
51
+ who is a prior offender who prevailed on appeal from a subsequent non-final judgment
52
+ or ruling or final citation or ODA, the motor carrier shall identify and provide
53
+ a conformed copy of the final judgment, ruling, citation, tax assessment, tax,
54
+ order, decision, or award which indicates the final disposition on the appeal.
55
+ (4) The port drayage motor carrier shall also provide documentation to show that
56
+ violations of any labor or employment law or regulation subject to a final judgment
57
+ or final citation or ODA have been sufficiently abated. This documentation shall
58
+ include: a statement under penalty of perjury that the port drayage motor carrier
59
+ does not currently engage in the labor practices identified as unlawful in the
60
+ final judgment, final citation or ODA, and a description of the steps the motor
61
+ carrier took to abate the violation(s). Subject to the Labor Commissioner''s request,
62
+ the agency may determine whether an applicable violation was abated by reviewing
63
+ any documents the motor carrier is required to maintain under the Labor Code,
64
+ wage orders, or any other applicable law. (b) The Labor Commissioner''s Office
65
+ will inform the port drayage motor carrier by letter of the agency''s determination
66
+ of whether the motor carrier has presented sufficient proof to merit removal from
67
+ the public list. (c) If a port drayage motor carrier on the public list has multiple
68
+ liability determinations posted on the public list, a separate request for removal
69
+ must be provided for each determination. Each removal request will be considered
70
+ individually and only the liability determination that is the subject of that
71
+ removal request may be removed.'
72
+ - text: '(Repealed). Author: Michael E. Mason, CPA'
73
+ inference: true
74
+ ---
75
+
76
+ # SetFit
77
+
78
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
79
+
80
+ The model has been trained using an efficient few-shot learning technique that involves:
81
+
82
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
83
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ - **Model Type:** SetFit
89
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
90
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
91
+ - **Maximum Sequence Length:** 512 tokens
92
+ - **Number of Classes:** 1000 classes
93
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
94
+ <!-- - **Language:** Unknown -->
95
+ <!-- - **License:** Unknown -->
96
+
97
+ ### Model Sources
98
+
99
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
100
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
101
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
102
+
103
+ ## Uses
104
+
105
+ ### Direct Use for Inference
106
+
107
+ First install the SetFit library:
108
+
109
+ ```bash
110
+ pip install setfit
111
+ ```
112
+
113
+ Then you can load this model and run inference.
114
+
115
+ ```python
116
+ from setfit import SetFitModel
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SetFitModel.from_pretrained("rkoh/setfit-bert")
120
+ # Run inference
121
+ preds = model("(Repealed). Author: Michael E. Mason, CPA")
122
+ ```
123
+
124
+ <!--
125
+ ### Downstream Use
126
+
127
+ *List how someone could finetune this model on their own dataset.*
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Set Metrics
151
+ | Training set | Min | Median | Max |
152
+ |:-------------|:----------|:-----------------|:--------------|
153
+ | Word count | tensor(1) | tensor(350.0160) | tensor(29510) |
154
+
155
+ | Label | Training Sample Count |
156
+ |:----------|:----------------------|
157
+ | tensor(0) | 1 |
158
+ | tensor(0) | 1 |
159
+ | tensor(0) | 1 |
160
+ | tensor(0) | 1 |
161
+ | tensor(0) | 1 |
162
+ | tensor(0) | 1 |
163
+ | tensor(0) | 1 |
164
+ | tensor(0) | 1 |
165
+ | tensor(0) | 1 |
166
+ | tensor(0) | 1 |
167
+ | tensor(0) | 1 |
168
+ | tensor(0) | 1 |
169
+ | tensor(0) | 1 |
170
+ | tensor(0) | 1 |
171
+ | tensor(0) | 1 |
172
+ | tensor(0) | 1 |
173
+ | tensor(0) | 1 |
174
+ | tensor(0) | 1 |
175
+ | tensor(0) | 1 |
176
+ | tensor(0) | 1 |
177
+ | tensor(0) | 1 |
178
+ | tensor(0) | 1 |
179
+ | tensor(0) | 1 |
180
+ | tensor(0) | 1 |
181
+ | tensor(0) | 1 |
182
+ | tensor(0) | 1 |
183
+ | tensor(0) | 1 |
184
+ | tensor(0) | 1 |
185
+ | tensor(0) | 1 |
186
+ | tensor(0) | 1 |
187
+ | tensor(0) | 1 |
188
+ | tensor(0) | 1 |
189
+ | tensor(0) | 1 |
190
+ | tensor(0) | 1 |
191
+ | tensor(0) | 1 |
192
+ | tensor(0) | 1 |
193
+ | tensor(0) | 1 |
194
+ | tensor(0) | 1 |
195
+ | tensor(0) | 1 |
196
+ | tensor(0) | 1 |
197
+ | tensor(0) | 1 |
198
+ | tensor(0) | 1 |
199
+ | tensor(0) | 1 |
200
+ | tensor(0) | 1 |
201
+ | tensor(0) | 1 |
202
+ | tensor(0) | 1 |
203
+ | tensor(0) | 1 |
204
+ | tensor(0) | 1 |
205
+ | tensor(0) | 1 |
206
+ | tensor(0) | 1 |
207
+ | tensor(0) | 1 |
208
+ | tensor(0) | 1 |
209
+ | tensor(0) | 1 |
210
+ | tensor(0) | 1 |
211
+ | tensor(0) | 1 |
212
+ | tensor(0) | 1 |
213
+ | tensor(0) | 1 |
214
+ | tensor(0) | 1 |
215
+ | tensor(0) | 1 |
216
+ | tensor(0) | 1 |
217
+ | tensor(0) | 1 |
218
+ | tensor(0) | 1 |
219
+ | tensor(0) | 1 |
220
+ | tensor(0) | 1 |
221
+ | tensor(0) | 1 |
222
+ | tensor(0) | 1 |
223
+ | tensor(0) | 1 |
224
+ | tensor(0) | 1 |
225
+ | tensor(0) | 1 |
226
+ | tensor(0) | 1 |
227
+ | tensor(0) | 1 |
228
+ | tensor(0) | 1 |
229
+ | tensor(0) | 1 |
230
+ | tensor(0) | 1 |
231
+ | tensor(0) | 1 |
232
+ | tensor(0) | 1 |
233
+ | tensor(0) | 1 |
234
+ | tensor(0) | 1 |
235
+ | tensor(0) | 1 |
236
+ | tensor(0) | 1 |
237
+ | tensor(0) | 1 |
238
+ | tensor(0) | 1 |
239
+ | tensor(0) | 1 |
240
+ | tensor(0) | 1 |
241
+ | tensor(0) | 1 |
242
+ | tensor(0) | 1 |
243
+ | tensor(0) | 1 |
244
+ | tensor(1) | 1 |
245
+ | tensor(1) | 1 |
246
+ | tensor(1) | 1 |
247
+ | tensor(1) | 1 |
248
+ | tensor(1) | 1 |
249
+ | tensor(1) | 1 |
250
+ | tensor(1) | 1 |
251
+ | tensor(1) | 1 |
252
+ | tensor(1) | 1 |
253
+ | tensor(1) | 1 |
254
+ | tensor(1) | 1 |
255
+ | tensor(1) | 1 |
256
+ | tensor(1) | 1 |
257
+ | tensor(1) | 1 |
258
+ | tensor(1) | 1 |
259
+ | tensor(1) | 1 |
260
+ | tensor(1) | 1 |
261
+ | tensor(1) | 1 |
262
+ | tensor(1) | 1 |
263
+ | tensor(1) | 1 |
264
+ | tensor(1) | 1 |
265
+ | tensor(1) | 1 |
266
+ | tensor(1) | 1 |
267
+ | tensor(1) | 1 |
268
+ | tensor(1) | 1 |
269
+ | tensor(1) | 1 |
270
+ | tensor(1) | 1 |
271
+ | tensor(1) | 1 |
272
+ | tensor(1) | 1 |
273
+ | tensor(1) | 1 |
274
+ | tensor(1) | 1 |
275
+ | tensor(1) | 1 |
276
+ | tensor(1) | 1 |
277
+ | tensor(1) | 1 |
278
+ | tensor(1) | 1 |
279
+ | tensor(1) | 1 |
280
+ | tensor(1) | 1 |
281
+ | tensor(1) | 1 |
282
+ | tensor(1) | 1 |
283
+ | tensor(1) | 1 |
284
+ | tensor(1) | 1 |
285
+ | tensor(1) | 1 |
286
+ | tensor(1) | 1 |
287
+ | tensor(1) | 1 |
288
+ | tensor(1) | 1 |
289
+ | tensor(1) | 1 |
290
+ | tensor(1) | 1 |
291
+ | tensor(1) | 1 |
292
+ | tensor(1) | 1 |
293
+ | tensor(1) | 1 |
294
+ | tensor(1) | 1 |
295
+ | tensor(1) | 1 |
296
+ | tensor(1) | 1 |
297
+ | tensor(1) | 1 |
298
+ | tensor(1) | 1 |
299
+ | tensor(1) | 1 |
300
+ | tensor(1) | 1 |
301
+ | tensor(1) | 1 |
302
+ | tensor(1) | 1 |
303
+ | tensor(1) | 1 |
304
+ | tensor(1) | 1 |
305
+ | tensor(1) | 1 |
306
+ | tensor(1) | 1 |
307
+ | tensor(1) | 1 |
308
+ | tensor(1) | 1 |
309
+ | tensor(1) | 1 |
310
+ | tensor(1) | 1 |
311
+ | tensor(1) | 1 |
312
+ | tensor(1) | 1 |
313
+ | tensor(1) | 1 |
314
+ | tensor(1) | 1 |
315
+ | tensor(1) | 1 |
316
+ | tensor(1) | 1 |
317
+ | tensor(1) | 1 |
318
+ | tensor(1) | 1 |
319
+ | tensor(1) | 1 |
320
+ | tensor(1) | 1 |
321
+ | tensor(1) | 1 |
322
+ | tensor(1) | 1 |
323
+ | tensor(1) | 1 |
324
+ | tensor(1) | 1 |
325
+ | tensor(1) | 1 |
326
+ | tensor(1) | 1 |
327
+ | tensor(1) | 1 |
328
+ | tensor(1) | 1 |
329
+ | tensor(1) | 1 |
330
+ | tensor(1) | 1 |
331
+ | tensor(2) | 1 |
332
+ | tensor(2) | 1 |
333
+ | tensor(2) | 1 |
334
+ | tensor(2) | 1 |
335
+ | tensor(2) | 1 |
336
+ | tensor(2) | 1 |
337
+ | tensor(2) | 1 |
338
+ | tensor(2) | 1 |
339
+ | tensor(2) | 1 |
340
+ | tensor(2) | 1 |
341
+ | tensor(2) | 1 |
342
+ | tensor(2) | 1 |
343
+ | tensor(2) | 1 |
344
+ | tensor(2) | 1 |
345
+ | tensor(2) | 1 |
346
+ | tensor(2) | 1 |
347
+ | tensor(2) | 1 |
348
+ | tensor(2) | 1 |
349
+ | tensor(2) | 1 |
350
+ | tensor(2) | 1 |
351
+ | tensor(2) | 1 |
352
+ | tensor(2) | 1 |
353
+ | tensor(2) | 1 |
354
+ | tensor(2) | 1 |
355
+ | tensor(2) | 1 |
356
+ | tensor(2) | 1 |
357
+ | tensor(2) | 1 |
358
+ | tensor(2) | 1 |
359
+ | tensor(2) | 1 |
360
+ | tensor(2) | 1 |
361
+ | tensor(2) | 1 |
362
+ | tensor(2) | 1 |
363
+ | tensor(2) | 1 |
364
+ | tensor(2) | 1 |
365
+ | tensor(2) | 1 |
366
+ | tensor(2) | 1 |
367
+ | tensor(2) | 1 |
368
+ | tensor(2) | 1 |
369
+ | tensor(2) | 1 |
370
+ | tensor(2) | 1 |
371
+ | tensor(2) | 1 |
372
+ | tensor(2) | 1 |
373
+ | tensor(2) | 1 |
374
+ | tensor(2) | 1 |
375
+ | tensor(2) | 1 |
376
+ | tensor(2) | 1 |
377
+ | tensor(2) | 1 |
378
+ | tensor(2) | 1 |
379
+ | tensor(2) | 1 |
380
+ | tensor(2) | 1 |
381
+ | tensor(2) | 1 |
382
+ | tensor(2) | 1 |
383
+ | tensor(2) | 1 |
384
+ | tensor(2) | 1 |
385
+ | tensor(2) | 1 |
386
+ | tensor(2) | 1 |
387
+ | tensor(2) | 1 |
388
+ | tensor(2) | 1 |
389
+ | tensor(2) | 1 |
390
+ | tensor(2) | 1 |
391
+ | tensor(2) | 1 |
392
+ | tensor(2) | 1 |
393
+ | tensor(2) | 1 |
394
+ | tensor(2) | 1 |
395
+ | tensor(2) | 1 |
396
+ | tensor(2) | 1 |
397
+ | tensor(2) | 1 |
398
+ | tensor(2) | 1 |
399
+ | tensor(2) | 1 |
400
+ | tensor(2) | 1 |
401
+ | tensor(2) | 1 |
402
+ | tensor(2) | 1 |
403
+ | tensor(2) | 1 |
404
+ | tensor(2) | 1 |
405
+ | tensor(2) | 1 |
406
+ | tensor(2) | 1 |
407
+ | tensor(2) | 1 |
408
+ | tensor(2) | 1 |
409
+ | tensor(2) | 1 |
410
+ | tensor(2) | 1 |
411
+ | tensor(2) | 1 |
412
+ | tensor(2) | 1 |
413
+ | tensor(2) | 1 |
414
+ | tensor(2) | 1 |
415
+ | tensor(2) | 1 |
416
+ | tensor(2) | 1 |
417
+ | tensor(2) | 1 |
418
+ | tensor(2) | 1 |
419
+ | tensor(2) | 1 |
420
+ | tensor(2) | 1 |
421
+ | tensor(2) | 1 |
422
+ | tensor(2) | 1 |
423
+ | tensor(2) | 1 |
424
+ | tensor(2) | 1 |
425
+ | tensor(2) | 1 |
426
+ | tensor(2) | 1 |
427
+ | tensor(2) | 1 |
428
+ | tensor(2) | 1 |
429
+ | tensor(2) | 1 |
430
+ | tensor(2) | 1 |
431
+ | tensor(2) | 1 |
432
+ | tensor(2) | 1 |
433
+ | tensor(2) | 1 |
434
+ | tensor(2) | 1 |
435
+ | tensor(2) | 1 |
436
+ | tensor(2) | 1 |
437
+ | tensor(2) | 1 |
438
+ | tensor(2) | 1 |
439
+ | tensor(2) | 1 |
440
+ | tensor(2) | 1 |
441
+ | tensor(2) | 1 |
442
+ | tensor(2) | 1 |
443
+ | tensor(2) | 1 |
444
+ | tensor(2) | 1 |
445
+ | tensor(2) | 1 |
446
+ | tensor(2) | 1 |
447
+ | tensor(2) | 1 |
448
+ | tensor(2) | 1 |
449
+ | tensor(2) | 1 |
450
+ | tensor(2) | 1 |
451
+ | tensor(2) | 1 |
452
+ | tensor(2) | 1 |
453
+ | tensor(2) | 1 |
454
+ | tensor(2) | 1 |
455
+ | tensor(2) | 1 |
456
+ | tensor(2) | 1 |
457
+ | tensor(2) | 1 |
458
+ | tensor(2) | 1 |
459
+ | tensor(2) | 1 |
460
+ | tensor(2) | 1 |
461
+ | tensor(2) | 1 |
462
+ | tensor(2) | 1 |
463
+ | tensor(2) | 1 |
464
+ | tensor(2) | 1 |
465
+ | tensor(2) | 1 |
466
+ | tensor(2) | 1 |
467
+ | tensor(2) | 1 |
468
+ | tensor(2) | 1 |
469
+ | tensor(2) | 1 |
470
+ | tensor(2) | 1 |
471
+ | tensor(2) | 1 |
472
+ | tensor(2) | 1 |
473
+ | tensor(2) | 1 |
474
+ | tensor(2) | 1 |
475
+ | tensor(2) | 1 |
476
+ | tensor(2) | 1 |
477
+ | tensor(2) | 1 |
478
+ | tensor(2) | 1 |
479
+ | tensor(2) | 1 |
480
+ | tensor(2) | 1 |
481
+ | tensor(2) | 1 |
482
+ | tensor(2) | 1 |
483
+ | tensor(2) | 1 |
484
+ | tensor(2) | 1 |
485
+ | tensor(2) | 1 |
486
+ | tensor(2) | 1 |
487
+ | tensor(2) | 1 |
488
+ | tensor(2) | 1 |
489
+ | tensor(2) | 1 |
490
+ | tensor(2) | 1 |
491
+ | tensor(2) | 1 |
492
+ | tensor(2) | 1 |
493
+ | tensor(2) | 1 |
494
+ | tensor(2) | 1 |
495
+ | tensor(2) | 1 |
496
+ | tensor(2) | 1 |
497
+ | tensor(2) | 1 |
498
+ | tensor(2) | 1 |
499
+ | tensor(2) | 1 |
500
+ | tensor(2) | 1 |
501
+ | tensor(2) | 1 |
502
+ | tensor(2) | 1 |
503
+ | tensor(2) | 1 |
504
+ | tensor(2) | 1 |
505
+ | tensor(2) | 1 |
506
+ | tensor(2) | 1 |
507
+ | tensor(2) | 1 |
508
+ | tensor(2) | 1 |
509
+ | tensor(2) | 1 |
510
+ | tensor(2) | 1 |
511
+ | tensor(2) | 1 |
512
+ | tensor(2) | 1 |
513
+ | tensor(2) | 1 |
514
+ | tensor(2) | 1 |
515
+ | tensor(2) | 1 |
516
+ | tensor(2) | 1 |
517
+ | tensor(2) | 1 |
518
+ | tensor(2) | 1 |
519
+ | tensor(2) | 1 |
520
+ | tensor(2) | 1 |
521
+ | tensor(2) | 1 |
522
+ | tensor(2) | 1 |
523
+ | tensor(2) | 1 |
524
+ | tensor(2) | 1 |
525
+ | tensor(2) | 1 |
526
+ | tensor(2) | 1 |
527
+ | tensor(2) | 1 |
528
+ | tensor(2) | 1 |
529
+ | tensor(2) | 1 |
530
+ | tensor(2) | 1 |
531
+ | tensor(2) | 1 |
532
+ | tensor(2) | 1 |
533
+ | tensor(2) | 1 |
534
+ | tensor(2) | 1 |
535
+ | tensor(2) | 1 |
536
+ | tensor(2) | 1 |
537
+ | tensor(2) | 1 |
538
+ | tensor(2) | 1 |
539
+ | tensor(2) | 1 |
540
+ | tensor(2) | 1 |
541
+ | tensor(2) | 1 |
542
+ | tensor(2) | 1 |
543
+ | tensor(2) | 1 |
544
+ | tensor(2) | 1 |
545
+ | tensor(2) | 1 |
546
+ | tensor(2) | 1 |
547
+ | tensor(2) | 1 |
548
+ | tensor(2) | 1 |
549
+ | tensor(2) | 1 |
550
+ | tensor(2) | 1 |
551
+ | tensor(2) | 1 |
552
+ | tensor(2) | 1 |
553
+ | tensor(2) | 1 |
554
+ | tensor(2) | 1 |
555
+ | tensor(2) | 1 |
556
+ | tensor(2) | 1 |
557
+ | tensor(2) | 1 |
558
+ | tensor(2) | 1 |
559
+ | tensor(2) | 1 |
560
+ | tensor(2) | 1 |
561
+ | tensor(2) | 1 |
562
+ | tensor(2) | 1 |
563
+ | tensor(2) | 1 |
564
+ | tensor(2) | 1 |
565
+ | tensor(2) | 1 |
566
+ | tensor(2) | 1 |
567
+ | tensor(2) | 1 |
568
+ | tensor(2) | 1 |
569
+ | tensor(2) | 1 |
570
+ | tensor(2) | 1 |
571
+ | tensor(2) | 1 |
572
+ | tensor(2) | 1 |
573
+ | tensor(2) | 1 |
574
+ | tensor(2) | 1 |
575
+ | tensor(2) | 1 |
576
+ | tensor(2) | 1 |
577
+ | tensor(2) | 1 |
578
+ | tensor(2) | 1 |
579
+ | tensor(2) | 1 |
580
+ | tensor(2) | 1 |
581
+ | tensor(2) | 1 |
582
+ | tensor(2) | 1 |
583
+ | tensor(2) | 1 |
584
+ | tensor(2) | 1 |
585
+ | tensor(2) | 1 |
586
+ | tensor(2) | 1 |
587
+ | tensor(2) | 1 |
588
+ | tensor(2) | 1 |
589
+ | tensor(2) | 1 |
590
+ | tensor(2) | 1 |
591
+ | tensor(2) | 1 |
592
+ | tensor(2) | 1 |
593
+ | tensor(2) | 1 |
594
+ | tensor(2) | 1 |
595
+ | tensor(2) | 1 |
596
+ | tensor(2) | 1 |
597
+ | tensor(2) | 1 |
598
+ | tensor(2) | 1 |
599
+ | tensor(2) | 1 |
600
+ | tensor(2) | 1 |
601
+ | tensor(2) | 1 |
602
+ | tensor(2) | 1 |
603
+ | tensor(2) | 1 |
604
+ | tensor(2) | 1 |
605
+ | tensor(2) | 1 |
606
+ | tensor(2) | 1 |
607
+ | tensor(2) | 1 |
608
+ | tensor(2) | 1 |
609
+ | tensor(2) | 1 |
610
+ | tensor(2) | 1 |
611
+ | tensor(2) | 1 |
612
+ | tensor(2) | 1 |
613
+ | tensor(2) | 1 |
614
+ | tensor(2) | 1 |
615
+ | tensor(2) | 1 |
616
+ | tensor(2) | 1 |
617
+ | tensor(2) | 1 |
618
+ | tensor(2) | 1 |
619
+ | tensor(2) | 1 |
620
+ | tensor(2) | 1 |
621
+ | tensor(2) | 1 |
622
+ | tensor(2) | 1 |
623
+ | tensor(2) | 1 |
624
+ | tensor(2) | 1 |
625
+ | tensor(2) | 1 |
626
+ | tensor(2) | 1 |
627
+ | tensor(2) | 1 |
628
+ | tensor(2) | 1 |
629
+ | tensor(2) | 1 |
630
+ | tensor(2) | 1 |
631
+ | tensor(2) | 1 |
632
+ | tensor(2) | 1 |
633
+ | tensor(2) | 1 |
634
+ | tensor(2) | 1 |
635
+ | tensor(2) | 1 |
636
+ | tensor(2) | 1 |
637
+ | tensor(2) | 1 |
638
+ | tensor(2) | 1 |
639
+ | tensor(2) | 1 |
640
+ | tensor(2) | 1 |
641
+ | tensor(2) | 1 |
642
+ | tensor(2) | 1 |
643
+ | tensor(2) | 1 |
644
+ | tensor(2) | 1 |
645
+ | tensor(2) | 1 |
646
+ | tensor(2) | 1 |
647
+ | tensor(2) | 1 |
648
+ | tensor(2) | 1 |
649
+ | tensor(2) | 1 |
650
+ | tensor(2) | 1 |
651
+ | tensor(2) | 1 |
652
+ | tensor(2) | 1 |
653
+ | tensor(2) | 1 |
654
+ | tensor(2) | 1 |
655
+ | tensor(2) | 1 |
656
+ | tensor(2) | 1 |
657
+ | tensor(2) | 1 |
658
+ | tensor(2) | 1 |
659
+ | tensor(2) | 1 |
660
+ | tensor(2) | 1 |
661
+ | tensor(2) | 1 |
662
+ | tensor(2) | 1 |
663
+ | tensor(2) | 1 |
664
+ | tensor(2) | 1 |
665
+ | tensor(2) | 1 |
666
+ | tensor(2) | 1 |
667
+ | tensor(2) | 1 |
668
+ | tensor(2) | 1 |
669
+ | tensor(2) | 1 |
670
+ | tensor(2) | 1 |
671
+ | tensor(2) | 1 |
672
+ | tensor(2) | 1 |
673
+ | tensor(2) | 1 |
674
+ | tensor(2) | 1 |
675
+ | tensor(2) | 1 |
676
+ | tensor(2) | 1 |
677
+ | tensor(2) | 1 |
678
+ | tensor(2) | 1 |
679
+ | tensor(2) | 1 |
680
+ | tensor(2) | 1 |
681
+ | tensor(2) | 1 |
682
+ | tensor(2) | 1 |
683
+ | tensor(2) | 1 |
684
+ | tensor(2) | 1 |
685
+ | tensor(2) | 1 |
686
+ | tensor(2) | 1 |
687
+ | tensor(2) | 1 |
688
+ | tensor(2) | 1 |
689
+ | tensor(2) | 1 |
690
+ | tensor(2) | 1 |
691
+ | tensor(2) | 1 |
692
+ | tensor(2) | 1 |
693
+ | tensor(2) | 1 |
694
+ | tensor(2) | 1 |
695
+ | tensor(2) | 1 |
696
+ | tensor(2) | 1 |
697
+ | tensor(2) | 1 |
698
+ | tensor(2) | 1 |
699
+ | tensor(2) | 1 |
700
+ | tensor(2) | 1 |
701
+ | tensor(2) | 1 |
702
+ | tensor(2) | 1 |
703
+ | tensor(2) | 1 |
704
+ | tensor(2) | 1 |
705
+ | tensor(2) | 1 |
706
+ | tensor(2) | 1 |
707
+ | tensor(2) | 1 |
708
+ | tensor(2) | 1 |
709
+ | tensor(2) | 1 |
710
+ | tensor(2) | 1 |
711
+ | tensor(2) | 1 |
712
+ | tensor(2) | 1 |
713
+ | tensor(2) | 1 |
714
+ | tensor(2) | 1 |
715
+ | tensor(2) | 1 |
716
+ | tensor(2) | 1 |
717
+ | tensor(2) | 1 |
718
+ | tensor(2) | 1 |
719
+ | tensor(2) | 1 |
720
+ | tensor(2) | 1 |
721
+ | tensor(2) | 1 |
722
+ | tensor(2) | 1 |
723
+ | tensor(2) | 1 |
724
+ | tensor(2) | 1 |
725
+ | tensor(2) | 1 |
726
+ | tensor(2) | 1 |
727
+ | tensor(2) | 1 |
728
+ | tensor(2) | 1 |
729
+ | tensor(2) | 1 |
730
+ | tensor(2) | 1 |
731
+ | tensor(2) | 1 |
732
+ | tensor(2) | 1 |
733
+ | tensor(2) | 1 |
734
+ | tensor(2) | 1 |
735
+ | tensor(2) | 1 |
736
+ | tensor(2) | 1 |
737
+ | tensor(2) | 1 |
738
+ | tensor(2) | 1 |
739
+ | tensor(2) | 1 |
740
+ | tensor(2) | 1 |
741
+ | tensor(2) | 1 |
742
+ | tensor(2) | 1 |
743
+ | tensor(2) | 1 |
744
+ | tensor(2) | 1 |
745
+ | tensor(2) | 1 |
746
+ | tensor(2) | 1 |
747
+ | tensor(2) | 1 |
748
+ | tensor(2) | 1 |
749
+ | tensor(2) | 1 |
750
+ | tensor(2) | 1 |
751
+ | tensor(2) | 1 |
752
+ | tensor(2) | 1 |
753
+ | tensor(2) | 1 |
754
+ | tensor(2) | 1 |
755
+ | tensor(2) | 1 |
756
+ | tensor(2) | 1 |
757
+ | tensor(2) | 1 |
758
+ | tensor(2) | 1 |
759
+ | tensor(2) | 1 |
760
+ | tensor(3) | 1 |
761
+ | tensor(3) | 1 |
762
+ | tensor(3) | 1 |
763
+ | tensor(3) | 1 |
764
+ | tensor(3) | 1 |
765
+ | tensor(3) | 1 |
766
+ | tensor(3) | 1 |
767
+ | tensor(3) | 1 |
768
+ | tensor(3) | 1 |
769
+ | tensor(3) | 1 |
770
+ | tensor(3) | 1 |
771
+ | tensor(3) | 1 |
772
+ | tensor(3) | 1 |
773
+ | tensor(3) | 1 |
774
+ | tensor(3) | 1 |
775
+ | tensor(3) | 1 |
776
+ | tensor(3) | 1 |
777
+ | tensor(3) | 1 |
778
+ | tensor(3) | 1 |
779
+ | tensor(3) | 1 |
780
+ | tensor(3) | 1 |
781
+ | tensor(3) | 1 |
782
+ | tensor(3) | 1 |
783
+ | tensor(3) | 1 |
784
+ | tensor(3) | 1 |
785
+ | tensor(3) | 1 |
786
+ | tensor(3) | 1 |
787
+ | tensor(3) | 1 |
788
+ | tensor(3) | 1 |
789
+ | tensor(3) | 1 |
790
+ | tensor(3) | 1 |
791
+ | tensor(3) | 1 |
792
+ | tensor(3) | 1 |
793
+ | tensor(3) | 1 |
794
+ | tensor(3) | 1 |
795
+ | tensor(3) | 1 |
796
+ | tensor(3) | 1 |
797
+ | tensor(3) | 1 |
798
+ | tensor(3) | 1 |
799
+ | tensor(3) | 1 |
800
+ | tensor(3) | 1 |
801
+ | tensor(3) | 1 |
802
+ | tensor(3) | 1 |
803
+ | tensor(3) | 1 |
804
+ | tensor(3) | 1 |
805
+ | tensor(3) | 1 |
806
+ | tensor(3) | 1 |
807
+ | tensor(3) | 1 |
808
+ | tensor(3) | 1 |
809
+ | tensor(3) | 1 |
810
+ | tensor(3) | 1 |
811
+ | tensor(3) | 1 |
812
+ | tensor(3) | 1 |
813
+ | tensor(3) | 1 |
814
+ | tensor(3) | 1 |
815
+ | tensor(3) | 1 |
816
+ | tensor(3) | 1 |
817
+ | tensor(3) | 1 |
818
+ | tensor(3) | 1 |
819
+ | tensor(3) | 1 |
820
+ | tensor(3) | 1 |
821
+ | tensor(3) | 1 |
822
+ | tensor(3) | 1 |
823
+ | tensor(3) | 1 |
824
+ | tensor(3) | 1 |
825
+ | tensor(3) | 1 |
826
+ | tensor(3) | 1 |
827
+ | tensor(3) | 1 |
828
+ | tensor(3) | 1 |
829
+ | tensor(3) | 1 |
830
+ | tensor(3) | 1 |
831
+ | tensor(3) | 1 |
832
+ | tensor(3) | 1 |
833
+ | tensor(3) | 1 |
834
+ | tensor(3) | 1 |
835
+ | tensor(3) | 1 |
836
+ | tensor(3) | 1 |
837
+ | tensor(3) | 1 |
838
+ | tensor(3) | 1 |
839
+ | tensor(3) | 1 |
840
+ | tensor(3) | 1 |
841
+ | tensor(3) | 1 |
842
+ | tensor(3) | 1 |
843
+ | tensor(3) | 1 |
844
+ | tensor(3) | 1 |
845
+ | tensor(3) | 1 |
846
+ | tensor(3) | 1 |
847
+ | tensor(3) | 1 |
848
+ | tensor(3) | 1 |
849
+ | tensor(3) | 1 |
850
+ | tensor(3) | 1 |
851
+ | tensor(3) | 1 |
852
+ | tensor(3) | 1 |
853
+ | tensor(3) | 1 |
854
+ | tensor(3) | 1 |
855
+ | tensor(3) | 1 |
856
+ | tensor(3) | 1 |
857
+ | tensor(3) | 1 |
858
+ | tensor(3) | 1 |
859
+ | tensor(3) | 1 |
860
+ | tensor(3) | 1 |
861
+ | tensor(3) | 1 |
862
+ | tensor(3) | 1 |
863
+ | tensor(3) | 1 |
864
+ | tensor(3) | 1 |
865
+ | tensor(3) | 1 |
866
+ | tensor(3) | 1 |
867
+ | tensor(3) | 1 |
868
+ | tensor(3) | 1 |
869
+ | tensor(3) | 1 |
870
+ | tensor(3) | 1 |
871
+ | tensor(3) | 1 |
872
+ | tensor(3) | 1 |
873
+ | tensor(3) | 1 |
874
+ | tensor(3) | 1 |
875
+ | tensor(3) | 1 |
876
+ | tensor(3) | 1 |
877
+ | tensor(3) | 1 |
878
+ | tensor(3) | 1 |
879
+ | tensor(3) | 1 |
880
+ | tensor(3) | 1 |
881
+ | tensor(3) | 1 |
882
+ | tensor(3) | 1 |
883
+ | tensor(3) | 1 |
884
+ | tensor(3) | 1 |
885
+ | tensor(3) | 1 |
886
+ | tensor(3) | 1 |
887
+ | tensor(3) | 1 |
888
+ | tensor(3) | 1 |
889
+ | tensor(3) | 1 |
890
+ | tensor(3) | 1 |
891
+ | tensor(3) | 1 |
892
+ | tensor(3) | 1 |
893
+ | tensor(3) | 1 |
894
+ | tensor(3) | 1 |
895
+ | tensor(3) | 1 |
896
+ | tensor(3) | 1 |
897
+ | tensor(3) | 1 |
898
+ | tensor(3) | 1 |
899
+ | tensor(3) | 1 |
900
+ | tensor(3) | 1 |
901
+ | tensor(3) | 1 |
902
+ | tensor(3) | 1 |
903
+ | tensor(3) | 1 |
904
+ | tensor(3) | 1 |
905
+ | tensor(3) | 1 |
906
+ | tensor(3) | 1 |
907
+ | tensor(3) | 1 |
908
+ | tensor(3) | 1 |
909
+ | tensor(3) | 1 |
910
+ | tensor(3) | 1 |
911
+ | tensor(3) | 1 |
912
+ | tensor(3) | 1 |
913
+ | tensor(3) | 1 |
914
+ | tensor(3) | 1 |
915
+ | tensor(3) | 1 |
916
+ | tensor(3) | 1 |
917
+ | tensor(3) | 1 |
918
+ | tensor(3) | 1 |
919
+ | tensor(3) | 1 |
920
+ | tensor(3) | 1 |
921
+ | tensor(3) | 1 |
922
+ | tensor(3) | 1 |
923
+ | tensor(3) | 1 |
924
+ | tensor(3) | 1 |
925
+ | tensor(3) | 1 |
926
+ | tensor(3) | 1 |
927
+ | tensor(3) | 1 |
928
+ | tensor(3) | 1 |
929
+ | tensor(3) | 1 |
930
+ | tensor(3) | 1 |
931
+ | tensor(3) | 1 |
932
+ | tensor(3) | 1 |
933
+ | tensor(3) | 1 |
934
+ | tensor(3) | 1 |
935
+ | tensor(3) | 1 |
936
+ | tensor(3) | 1 |
937
+ | tensor(3) | 1 |
938
+ | tensor(3) | 1 |
939
+ | tensor(3) | 1 |
940
+ | tensor(3) | 1 |
941
+ | tensor(3) | 1 |
942
+ | tensor(3) | 1 |
943
+ | tensor(3) | 1 |
944
+ | tensor(3) | 1 |
945
+ | tensor(3) | 1 |
946
+ | tensor(3) | 1 |
947
+ | tensor(3) | 1 |
948
+ | tensor(3) | 1 |
949
+ | tensor(3) | 1 |
950
+ | tensor(3) | 1 |
951
+ | tensor(3) | 1 |
952
+ | tensor(3) | 1 |
953
+ | tensor(3) | 1 |
954
+ | tensor(3) | 1 |
955
+ | tensor(3) | 1 |
956
+ | tensor(3) | 1 |
957
+ | tensor(3) | 1 |
958
+ | tensor(3) | 1 |
959
+ | tensor(3) | 1 |
960
+ | tensor(3) | 1 |
961
+ | tensor(3) | 1 |
962
+ | tensor(3) | 1 |
963
+ | tensor(3) | 1 |
964
+ | tensor(3) | 1 |
965
+ | tensor(3) | 1 |
966
+ | tensor(3) | 1 |
967
+ | tensor(3) | 1 |
968
+ | tensor(3) | 1 |
969
+ | tensor(3) | 1 |
970
+ | tensor(3) | 1 |
971
+ | tensor(3) | 1 |
972
+ | tensor(3) | 1 |
973
+ | tensor(3) | 1 |
974
+ | tensor(3) | 1 |
975
+ | tensor(3) | 1 |
976
+ | tensor(3) | 1 |
977
+ | tensor(3) | 1 |
978
+ | tensor(3) | 1 |
979
+ | tensor(3) | 1 |
980
+ | tensor(3) | 1 |
981
+ | tensor(3) | 1 |
982
+ | tensor(3) | 1 |
983
+ | tensor(3) | 1 |
984
+ | tensor(3) | 1 |
985
+ | tensor(3) | 1 |
986
+ | tensor(3) | 1 |
987
+ | tensor(3) | 1 |
988
+ | tensor(3) | 1 |
989
+ | tensor(3) | 1 |
990
+ | tensor(3) | 1 |
991
+ | tensor(3) | 1 |
992
+ | tensor(3) | 1 |
993
+ | tensor(3) | 1 |
994
+ | tensor(3) | 1 |
995
+ | tensor(3) | 1 |
996
+ | tensor(3) | 1 |
997
+ | tensor(3) | 1 |
998
+ | tensor(3) | 1 |
999
+ | tensor(3) | 1 |
1000
+ | tensor(3) | 1 |
1001
+ | tensor(3) | 1 |
1002
+ | tensor(3) | 1 |
1003
+ | tensor(3) | 1 |
1004
+ | tensor(3) | 1 |
1005
+ | tensor(3) | 1 |
1006
+ | tensor(3) | 1 |
1007
+ | tensor(3) | 1 |
1008
+ | tensor(3) | 1 |
1009
+ | tensor(3) | 1 |
1010
+ | tensor(3) | 1 |
1011
+ | tensor(3) | 1 |
1012
+ | tensor(3) | 1 |
1013
+ | tensor(3) | 1 |
1014
+ | tensor(3) | 1 |
1015
+ | tensor(3) | 1 |
1016
+ | tensor(3) | 1 |
1017
+ | tensor(3) | 1 |
1018
+ | tensor(3) | 1 |
1019
+ | tensor(3) | 1 |
1020
+ | tensor(3) | 1 |
1021
+ | tensor(3) | 1 |
1022
+ | tensor(3) | 1 |
1023
+ | tensor(3) | 1 |
1024
+ | tensor(3) | 1 |
1025
+ | tensor(3) | 1 |
1026
+ | tensor(3) | 1 |
1027
+ | tensor(3) | 1 |
1028
+ | tensor(3) | 1 |
1029
+ | tensor(3) | 1 |
1030
+ | tensor(3) | 1 |
1031
+ | tensor(3) | 1 |
1032
+ | tensor(3) | 1 |
1033
+ | tensor(3) | 1 |
1034
+ | tensor(3) | 1 |
1035
+ | tensor(3) | 1 |
1036
+ | tensor(3) | 1 |
1037
+ | tensor(3) | 1 |
1038
+ | tensor(3) | 1 |
1039
+ | tensor(3) | 1 |
1040
+ | tensor(3) | 1 |
1041
+ | tensor(3) | 1 |
1042
+ | tensor(3) | 1 |
1043
+ | tensor(3) | 1 |
1044
+ | tensor(3) | 1 |
1045
+ | tensor(3) | 1 |
1046
+ | tensor(3) | 1 |
1047
+ | tensor(3) | 1 |
1048
+ | tensor(3) | 1 |
1049
+ | tensor(3) | 1 |
1050
+ | tensor(3) | 1 |
1051
+ | tensor(3) | 1 |
1052
+ | tensor(3) | 1 |
1053
+ | tensor(3) | 1 |
1054
+ | tensor(3) | 1 |
1055
+ | tensor(3) | 1 |
1056
+ | tensor(3) | 1 |
1057
+ | tensor(3) | 1 |
1058
+ | tensor(3) | 1 |
1059
+ | tensor(3) | 1 |
1060
+ | tensor(3) | 1 |
1061
+ | tensor(3) | 1 |
1062
+ | tensor(3) | 1 |
1063
+ | tensor(3) | 1 |
1064
+ | tensor(3) | 1 |
1065
+ | tensor(3) | 1 |
1066
+ | tensor(3) | 1 |
1067
+ | tensor(3) | 1 |
1068
+ | tensor(3) | 1 |
1069
+ | tensor(3) | 1 |
1070
+ | tensor(3) | 1 |
1071
+ | tensor(3) | 1 |
1072
+ | tensor(3) | 1 |
1073
+ | tensor(3) | 1 |
1074
+ | tensor(3) | 1 |
1075
+ | tensor(3) | 1 |
1076
+ | tensor(3) | 1 |
1077
+ | tensor(3) | 1 |
1078
+ | tensor(3) | 1 |
1079
+ | tensor(3) | 1 |
1080
+ | tensor(3) | 1 |
1081
+ | tensor(3) | 1 |
1082
+ | tensor(3) | 1 |
1083
+ | tensor(3) | 1 |
1084
+ | tensor(3) | 1 |
1085
+ | tensor(3) | 1 |
1086
+ | tensor(3) | 1 |
1087
+ | tensor(3) | 1 |
1088
+ | tensor(3) | 1 |
1089
+ | tensor(3) | 1 |
1090
+ | tensor(3) | 1 |
1091
+ | tensor(3) | 1 |
1092
+ | tensor(3) | 1 |
1093
+ | tensor(3) | 1 |
1094
+ | tensor(3) | 1 |
1095
+ | tensor(3) | 1 |
1096
+ | tensor(3) | 1 |
1097
+ | tensor(3) | 1 |
1098
+ | tensor(3) | 1 |
1099
+ | tensor(3) | 1 |
1100
+ | tensor(3) | 1 |
1101
+ | tensor(3) | 1 |
1102
+ | tensor(3) | 1 |
1103
+ | tensor(3) | 1 |
1104
+ | tensor(3) | 1 |
1105
+ | tensor(3) | 1 |
1106
+ | tensor(3) | 1 |
1107
+ | tensor(3) | 1 |
1108
+ | tensor(3) | 1 |
1109
+ | tensor(3) | 1 |
1110
+ | tensor(3) | 1 |
1111
+ | tensor(3) | 1 |
1112
+ | tensor(4) | 1 |
1113
+ | tensor(4) | 1 |
1114
+ | tensor(4) | 1 |
1115
+ | tensor(4) | 1 |
1116
+ | tensor(4) | 1 |
1117
+ | tensor(4) | 1 |
1118
+ | tensor(4) | 1 |
1119
+ | tensor(4) | 1 |
1120
+ | tensor(4) | 1 |
1121
+ | tensor(4) | 1 |
1122
+ | tensor(4) | 1 |
1123
+ | tensor(4) | 1 |
1124
+ | tensor(4) | 1 |
1125
+ | tensor(4) | 1 |
1126
+ | tensor(4) | 1 |
1127
+ | tensor(4) | 1 |
1128
+ | tensor(4) | 1 |
1129
+ | tensor(4) | 1 |
1130
+ | tensor(4) | 1 |
1131
+ | tensor(4) | 1 |
1132
+ | tensor(4) | 1 |
1133
+ | tensor(4) | 1 |
1134
+ | tensor(4) | 1 |
1135
+ | tensor(4) | 1 |
1136
+ | tensor(4) | 1 |
1137
+ | tensor(4) | 1 |
1138
+ | tensor(4) | 1 |
1139
+ | tensor(4) | 1 |
1140
+ | tensor(4) | 1 |
1141
+ | tensor(4) | 1 |
1142
+ | tensor(4) | 1 |
1143
+ | tensor(4) | 1 |
1144
+ | tensor(4) | 1 |
1145
+ | tensor(4) | 1 |
1146
+ | tensor(4) | 1 |
1147
+ | tensor(4) | 1 |
1148
+ | tensor(4) | 1 |
1149
+ | tensor(4) | 1 |
1150
+ | tensor(4) | 1 |
1151
+ | tensor(4) | 1 |
1152
+ | tensor(4) | 1 |
1153
+ | tensor(4) | 1 |
1154
+ | tensor(4) | 1 |
1155
+ | tensor(4) | 1 |
1156
+ | tensor(4) | 1 |
1157
+
1158
+ ### Training Hyperparameters
1159
+ - batch_size: (32, 32)
1160
+ - num_epochs: (3, 3)
1161
+ - max_steps: -1
1162
+ - sampling_strategy: oversampling
1163
+ - num_iterations: 20
1164
+ - body_learning_rate: (2e-05, 2e-05)
1165
+ - head_learning_rate: 0.01
1166
+ - loss: CosineSimilarityLoss
1167
+ - distance_metric: cosine_distance
1168
+ - margin: 0.25
1169
+ - end_to_end: False
1170
+ - use_amp: False
1171
+ - warmup_proportion: 0.1
1172
+ - l2_weight: 0.01
1173
+ - seed: 42
1174
+ - eval_max_steps: -1
1175
+ - load_best_model_at_end: True
1176
+
1177
+ ### Training Results
1178
+ | Epoch | Step | Training Loss | Validation Loss |
1179
+ |:------:|:----:|:-------------:|:---------------:|
1180
+ | 0.0008 | 1 | 0.0641 | - |
1181
+ | 0.008 | 10 | 0.0831 | - |
1182
+ | 0.016 | 20 | 0.0955 | - |
1183
+ | 0.024 | 30 | 0.08 | - |
1184
+ | 0.032 | 40 | 0.0729 | - |
1185
+ | 0.04 | 50 | 0.063 | - |
1186
+ | 0.048 | 60 | 0.0581 | - |
1187
+ | 0.056 | 70 | 0.0622 | - |
1188
+ | 0.064 | 80 | 0.0432 | - |
1189
+ | 0.072 | 90 | 0.032 | - |
1190
+ | 0.08 | 100 | 0.0381 | - |
1191
+ | 0.088 | 110 | 0.0423 | - |
1192
+ | 0.096 | 120 | 0.0312 | - |
1193
+ | 0.104 | 130 | 0.0289 | - |
1194
+ | 0.112 | 140 | 0.0487 | - |
1195
+ | 0.12 | 150 | 0.0346 | - |
1196
+ | 0.128 | 160 | 0.0185 | - |
1197
+ | 0.136 | 170 | 0.0319 | - |
1198
+ | 0.144 | 180 | 0.0168 | - |
1199
+ | 0.152 | 190 | 0.0223 | - |
1200
+ | 0.16 | 200 | 0.0144 | - |
1201
+ | 0.168 | 210 | 0.0089 | - |
1202
+ | 0.176 | 220 | 0.0161 | - |
1203
+ | 0.184 | 230 | 0.0047 | - |
1204
+ | 0.192 | 240 | 0.0066 | - |
1205
+ | 0.2 | 250 | 0.0202 | - |
1206
+ | 0.208 | 260 | 0.0062 | - |
1207
+ | 0.216 | 270 | 0.0031 | - |
1208
+ | 0.224 | 280 | 0.012 | - |
1209
+ | 0.232 | 290 | 0.0023 | - |
1210
+ | 0.24 | 300 | 0.0016 | - |
1211
+ | 0.248 | 310 | 0.0195 | - |
1212
+ | 0.256 | 320 | 0.0045 | - |
1213
+ | 0.264 | 330 | 0.0092 | - |
1214
+ | 0.272 | 340 | 0.0055 | - |
1215
+ | 0.28 | 350 | 0.0025 | - |
1216
+ | 0.288 | 360 | 0.001 | - |
1217
+ | 0.296 | 370 | 0.0044 | - |
1218
+ | 0.304 | 380 | 0.0073 | - |
1219
+ | 0.312 | 390 | 0.0054 | - |
1220
+ | 0.32 | 400 | 0.0009 | - |
1221
+ | 0.328 | 410 | 0.0006 | - |
1222
+ | 0.336 | 420 | 0.0037 | - |
1223
+ | 0.344 | 430 | 0.001 | - |
1224
+ | 0.352 | 440 | 0.0009 | - |
1225
+ | 0.36 | 450 | 0.005 | - |
1226
+ | 0.368 | 460 | 0.0036 | - |
1227
+ | 0.376 | 470 | 0.0042 | - |
1228
+ | 0.384 | 480 | 0.0006 | - |
1229
+ | 0.392 | 490 | 0.0017 | - |
1230
+ | 0.4 | 500 | 0.0079 | - |
1231
+ | 0.408 | 510 | 0.0015 | - |
1232
+ | 0.416 | 520 | 0.001 | - |
1233
+ | 0.424 | 530 | 0.0005 | - |
1234
+ | 0.432 | 540 | 0.0009 | - |
1235
+ | 0.44 | 550 | 0.0002 | - |
1236
+ | 0.448 | 560 | 0.0034 | - |
1237
+ | 0.456 | 570 | 0.0002 | - |
1238
+ | 0.464 | 580 | 0.0035 | - |
1239
+ | 0.472 | 590 | 0.0002 | - |
1240
+ | 0.48 | 600 | 0.0003 | - |
1241
+ | 0.488 | 610 | 0.0003 | - |
1242
+ | 0.496 | 620 | 0.0002 | - |
1243
+ | 0.504 | 630 | 0.0034 | - |
1244
+ | 0.512 | 640 | 0.0033 | - |
1245
+ | 0.52 | 650 | 0.0029 | - |
1246
+ | 0.528 | 660 | 0.0002 | - |
1247
+ | 0.536 | 670 | 0.0002 | - |
1248
+ | 0.544 | 680 | 0.0051 | - |
1249
+ | 0.552 | 690 | 0.0028 | - |
1250
+ | 0.56 | 700 | 0.0023 | - |
1251
+ | 0.568 | 710 | 0.0003 | - |
1252
+ | 0.576 | 720 | 0.0003 | - |
1253
+ | 0.584 | 730 | 0.0004 | - |
1254
+ | 0.592 | 740 | 0.0001 | - |
1255
+ | 0.6 | 750 | 0.0018 | - |
1256
+ | 0.608 | 760 | 0.0007 | - |
1257
+ | 0.616 | 770 | 0.0006 | - |
1258
+ | 0.624 | 780 | 0.0025 | - |
1259
+ | 0.632 | 790 | 0.0006 | - |
1260
+ | 0.64 | 800 | 0.0002 | - |
1261
+ | 0.648 | 810 | 0.0001 | - |
1262
+ | 0.656 | 820 | 0.0002 | - |
1263
+ | 0.664 | 830 | 0.0033 | - |
1264
+ | 0.672 | 840 | 0.0003 | - |
1265
+ | 0.68 | 850 | 0.0002 | - |
1266
+ | 0.688 | 860 | 0.0001 | - |
1267
+ | 0.696 | 870 | 0.0029 | - |
1268
+ | 0.704 | 880 | 0.0001 | - |
1269
+ | 0.712 | 890 | 0.0002 | - |
1270
+ | 0.72 | 900 | 0.0001 | - |
1271
+ | 0.728 | 910 | 0.0001 | - |
1272
+ | 0.736 | 920 | 0.0002 | - |
1273
+ | 0.744 | 930 | 0.0038 | - |
1274
+ | 0.752 | 940 | 0.0032 | - |
1275
+ | 0.76 | 950 | 0.0007 | - |
1276
+ | 0.768 | 960 | 0.0002 | - |
1277
+ | 0.776 | 970 | 0.0021 | - |
1278
+ | 0.784 | 980 | 0.0008 | - |
1279
+ | 0.792 | 990 | 0.0003 | - |
1280
+ | 0.8 | 1000 | 0.0002 | - |
1281
+ | 0.808 | 1010 | 0.0001 | - |
1282
+ | 0.816 | 1020 | 0.0001 | - |
1283
+ | 0.824 | 1030 | 0.0002 | - |
1284
+ | 0.832 | 1040 | 0.0002 | - |
1285
+ | 0.84 | 1050 | 0.0002 | - |
1286
+ | 0.848 | 1060 | 0.0026 | - |
1287
+ | 0.856 | 1070 | 0.0001 | - |
1288
+ | 0.864 | 1080 | 0.0001 | - |
1289
+ | 0.872 | 1090 | 0.0001 | - |
1290
+ | 0.88 | 1100 | 0.0001 | - |
1291
+ | 0.888 | 1110 | 0.0001 | - |
1292
+ | 0.896 | 1120 | 0.0001 | - |
1293
+ | 0.904 | 1130 | 0.0001 | - |
1294
+ | 0.912 | 1140 | 0.0001 | - |
1295
+ | 0.92 | 1150 | 0.0001 | - |
1296
+ | 0.928 | 1160 | 0.0001 | - |
1297
+ | 0.936 | 1170 | 0.0001 | - |
1298
+ | 0.944 | 1180 | 0.0001 | - |
1299
+ | 0.952 | 1190 | 0.0001 | - |
1300
+ | 0.96 | 1200 | 0.0001 | - |
1301
+ | 0.968 | 1210 | 0.0001 | - |
1302
+ | 0.976 | 1220 | 0.0001 | - |
1303
+ | 0.984 | 1230 | 0.0029 | - |
1304
+ | 0.992 | 1240 | 0.0001 | - |
1305
+ | 1.0 | 1250 | 0.0001 | 0.0290 |
1306
+ | 1.008 | 1260 | 0.0001 | - |
1307
+ | 1.016 | 1270 | 0.0001 | - |
1308
+ | 1.024 | 1280 | 0.0033 | - |
1309
+ | 1.032 | 1290 | 0.0001 | - |
1310
+ | 1.04 | 1300 | 0.0002 | - |
1311
+ | 1.048 | 1310 | 0.0001 | - |
1312
+ | 1.056 | 1320 | 0.0001 | - |
1313
+ | 1.064 | 1330 | 0.0001 | - |
1314
+ | 1.072 | 1340 | 0.0001 | - |
1315
+ | 1.08 | 1350 | 0.0001 | - |
1316
+ | 1.088 | 1360 | 0.0001 | - |
1317
+ | 1.096 | 1370 | 0.0001 | - |
1318
+ | 1.104 | 1380 | 0.0001 | - |
1319
+ | 1.112 | 1390 | 0.0001 | - |
1320
+ | 1.12 | 1400 | 0.0019 | - |
1321
+ | 1.1280 | 1410 | 0.0002 | - |
1322
+ | 1.1360 | 1420 | 0.0001 | - |
1323
+ | 1.144 | 1430 | 0.0007 | - |
1324
+ | 1.152 | 1440 | 0.0001 | - |
1325
+ | 1.16 | 1450 | 0.0001 | - |
1326
+ | 1.168 | 1460 | 0.0002 | - |
1327
+ | 1.176 | 1470 | 0.0001 | - |
1328
+ | 1.184 | 1480 | 0.0001 | - |
1329
+ | 1.192 | 1490 | 0.0001 | - |
1330
+ | 1.2 | 1500 | 0.0001 | - |
1331
+ | 1.208 | 1510 | 0.0001 | - |
1332
+ | 1.216 | 1520 | 0.0001 | - |
1333
+ | 1.224 | 1530 | 0.0001 | - |
1334
+ | 1.232 | 1540 | 0.0001 | - |
1335
+ | 1.24 | 1550 | 0.0 | - |
1336
+ | 1.248 | 1560 | 0.0001 | - |
1337
+ | 1.256 | 1570 | 0.0 | - |
1338
+ | 1.264 | 1580 | 0.0001 | - |
1339
+ | 1.272 | 1590 | 0.0001 | - |
1340
+ | 1.28 | 1600 | 0.0001 | - |
1341
+ | 1.288 | 1610 | 0.0001 | - |
1342
+ | 1.296 | 1620 | 0.0001 | - |
1343
+ | 1.304 | 1630 | 0.0 | - |
1344
+ | 1.312 | 1640 | 0.0001 | - |
1345
+ | 1.32 | 1650 | 0.0001 | - |
1346
+ | 1.328 | 1660 | 0.0 | - |
1347
+ | 1.336 | 1670 | 0.0001 | - |
1348
+ | 1.3440 | 1680 | 0.0001 | - |
1349
+ | 1.3520 | 1690 | 0.0 | - |
1350
+ | 1.3600 | 1700 | 0.0001 | - |
1351
+ | 1.3680 | 1710 | 0.0 | - |
1352
+ | 1.376 | 1720 | 0.0 | - |
1353
+ | 1.384 | 1730 | 0.0001 | - |
1354
+ | 1.392 | 1740 | 0.0 | - |
1355
+ | 1.4 | 1750 | 0.0001 | - |
1356
+ | 1.408 | 1760 | 0.0001 | - |
1357
+ | 1.416 | 1770 | 0.0 | - |
1358
+ | 1.424 | 1780 | 0.0001 | - |
1359
+ | 1.432 | 1790 | 0.0001 | - |
1360
+ | 1.44 | 1800 | 0.0001 | - |
1361
+ | 1.448 | 1810 | 0.0001 | - |
1362
+ | 1.456 | 1820 | 0.0001 | - |
1363
+ | 1.464 | 1830 | 0.0001 | - |
1364
+ | 1.472 | 1840 | 0.0 | - |
1365
+ | 1.48 | 1850 | 0.0 | - |
1366
+ | 1.488 | 1860 | 0.0001 | - |
1367
+ | 1.496 | 1870 | 0.0001 | - |
1368
+ | 1.504 | 1880 | 0.0 | - |
1369
+ | 1.512 | 1890 | 0.0 | - |
1370
+ | 1.52 | 1900 | 0.0001 | - |
1371
+ | 1.528 | 1910 | 0.0001 | - |
1372
+ | 1.536 | 1920 | 0.0001 | - |
1373
+ | 1.544 | 1930 | 0.0 | - |
1374
+ | 1.552 | 1940 | 0.0 | - |
1375
+ | 1.56 | 1950 | 0.0001 | - |
1376
+ | 1.568 | 1960 | 0.0001 | - |
1377
+ | 1.576 | 1970 | 0.0001 | - |
1378
+ | 1.584 | 1980 | 0.0 | - |
1379
+ | 1.592 | 1990 | 0.0 | - |
1380
+ | 1.6 | 2000 | 0.0 | - |
1381
+ | 1.608 | 2010 | 0.0 | - |
1382
+ | 1.616 | 2020 | 0.0 | - |
1383
+ | 1.624 | 2030 | 0.0 | - |
1384
+ | 1.6320 | 2040 | 0.0001 | - |
1385
+ | 1.6400 | 2050 | 0.0 | - |
1386
+ | 1.6480 | 2060 | 0.0 | - |
1387
+ | 1.6560 | 2070 | 0.0 | - |
1388
+ | 1.6640 | 2080 | 0.0 | - |
1389
+ | 1.6720 | 2090 | 0.0 | - |
1390
+ | 1.6800 | 2100 | 0.0 | - |
1391
+ | 1.688 | 2110 | 0.0 | - |
1392
+ | 1.696 | 2120 | 0.0 | - |
1393
+ | 1.704 | 2130 | 0.0001 | - |
1394
+ | 1.712 | 2140 | 0.0 | - |
1395
+ | 1.72 | 2150 | 0.0 | - |
1396
+ | 1.728 | 2160 | 0.0 | - |
1397
+ | 1.736 | 2170 | 0.0 | - |
1398
+ | 1.744 | 2180 | 0.0 | - |
1399
+ | 1.752 | 2190 | 0.0 | - |
1400
+ | 1.76 | 2200 | 0.0001 | - |
1401
+ | 1.768 | 2210 | 0.0 | - |
1402
+ | 1.776 | 2220 | 0.0 | - |
1403
+ | 1.784 | 2230 | 0.0 | - |
1404
+ | 1.792 | 2240 | 0.0 | - |
1405
+ | 1.8 | 2250 | 0.0 | - |
1406
+ | 1.808 | 2260 | 0.0 | - |
1407
+ | 1.8160 | 2270 | 0.0 | - |
1408
+ | 1.8240 | 2280 | 0.0 | - |
1409
+ | 1.8320 | 2290 | 0.0 | - |
1410
+ | 1.8400 | 2300 | 0.0 | - |
1411
+ | 1.8480 | 2310 | 0.0 | - |
1412
+ | 1.8560 | 2320 | 0.0 | - |
1413
+ | 1.8640 | 2330 | 0.0 | - |
1414
+ | 1.8720 | 2340 | 0.0 | - |
1415
+ | 1.88 | 2350 | 0.0 | - |
1416
+ | 1.888 | 2360 | 0.0 | - |
1417
+ | 1.896 | 2370 | 0.0 | - |
1418
+ | 1.904 | 2380 | 0.0 | - |
1419
+ | 1.912 | 2390 | 0.0 | - |
1420
+ | 1.92 | 2400 | 0.0 | - |
1421
+ | 1.928 | 2410 | 0.0 | - |
1422
+ | 1.936 | 2420 | 0.0 | - |
1423
+ | 1.944 | 2430 | 0.0 | - |
1424
+ | 1.952 | 2440 | 0.0 | - |
1425
+ | 1.96 | 2450 | 0.0 | - |
1426
+ | 1.968 | 2460 | 0.0 | - |
1427
+ | 1.976 | 2470 | 0.0 | - |
1428
+ | 1.984 | 2480 | 0.0 | - |
1429
+ | 1.992 | 2490 | 0.0 | - |
1430
+ | 2.0 | 2500 | 0.0 | 0.0224 |
1431
+ | 2.008 | 2510 | 0.0 | - |
1432
+ | 2.016 | 2520 | 0.0 | - |
1433
+ | 2.024 | 2530 | 0.0 | - |
1434
+ | 2.032 | 2540 | 0.0 | - |
1435
+ | 2.04 | 2550 | 0.0 | - |
1436
+ | 2.048 | 2560 | 0.0 | - |
1437
+ | 2.056 | 2570 | 0.0 | - |
1438
+ | 2.064 | 2580 | 0.0 | - |
1439
+ | 2.072 | 2590 | 0.0 | - |
1440
+ | 2.08 | 2600 | 0.0 | - |
1441
+ | 2.088 | 2610 | 0.0 | - |
1442
+ | 2.096 | 2620 | 0.0 | - |
1443
+ | 2.104 | 2630 | 0.0001 | - |
1444
+ | 2.112 | 2640 | 0.0 | - |
1445
+ | 2.12 | 2650 | 0.0 | - |
1446
+ | 2.128 | 2660 | 0.0 | - |
1447
+ | 2.136 | 2670 | 0.0 | - |
1448
+ | 2.144 | 2680 | 0.0 | - |
1449
+ | 2.152 | 2690 | 0.0 | - |
1450
+ | 2.16 | 2700 | 0.0 | - |
1451
+ | 2.168 | 2710 | 0.0 | - |
1452
+ | 2.176 | 2720 | 0.0 | - |
1453
+ | 2.184 | 2730 | 0.0032 | - |
1454
+ | 2.192 | 2740 | 0.0001 | - |
1455
+ | 2.2 | 2750 | 0.0 | - |
1456
+ | 2.208 | 2760 | 0.0 | - |
1457
+ | 2.216 | 2770 | 0.0 | - |
1458
+ | 2.224 | 2780 | 0.0 | - |
1459
+ | 2.232 | 2790 | 0.0 | - |
1460
+ | 2.24 | 2800 | 0.0 | - |
1461
+ | 2.248 | 2810 | 0.0 | - |
1462
+ | 2.2560 | 2820 | 0.0 | - |
1463
+ | 2.2640 | 2830 | 0.0 | - |
1464
+ | 2.2720 | 2840 | 0.0 | - |
1465
+ | 2.2800 | 2850 | 0.0 | - |
1466
+ | 2.288 | 2860 | 0.0 | - |
1467
+ | 2.296 | 2870 | 0.0 | - |
1468
+ | 2.304 | 2880 | 0.0 | - |
1469
+ | 2.312 | 2890 | 0.0 | - |
1470
+ | 2.32 | 2900 | 0.0 | - |
1471
+ | 2.328 | 2910 | 0.0 | - |
1472
+ | 2.336 | 2920 | 0.0 | - |
1473
+ | 2.344 | 2930 | 0.0 | - |
1474
+ | 2.352 | 2940 | 0.0 | - |
1475
+ | 2.36 | 2950 | 0.0011 | - |
1476
+ | 2.368 | 2960 | 0.0 | - |
1477
+ | 2.376 | 2970 | 0.0 | - |
1478
+ | 2.384 | 2980 | 0.0 | - |
1479
+ | 2.392 | 2990 | 0.0 | - |
1480
+ | 2.4 | 3000 | 0.0 | - |
1481
+ | 2.408 | 3010 | 0.0 | - |
1482
+ | 2.416 | 3020 | 0.0 | - |
1483
+ | 2.424 | 3030 | 0.0 | - |
1484
+ | 2.432 | 3040 | 0.0 | - |
1485
+ | 2.44 | 3050 | 0.0 | - |
1486
+ | 2.448 | 3060 | 0.0 | - |
1487
+ | 2.456 | 3070 | 0.0 | - |
1488
+ | 2.464 | 3080 | 0.0 | - |
1489
+ | 2.472 | 3090 | 0.0 | - |
1490
+ | 2.48 | 3100 | 0.0 | - |
1491
+ | 2.488 | 3110 | 0.0 | - |
1492
+ | 2.496 | 3120 | 0.0 | - |
1493
+ | 2.504 | 3130 | 0.0 | - |
1494
+ | 2.512 | 3140 | 0.0 | - |
1495
+ | 2.52 | 3150 | 0.0 | - |
1496
+ | 2.528 | 3160 | 0.0 | - |
1497
+ | 2.536 | 3170 | 0.0 | - |
1498
+ | 2.544 | 3180 | 0.0 | - |
1499
+ | 2.552 | 3190 | 0.0 | - |
1500
+ | 2.56 | 3200 | 0.0 | - |
1501
+ | 2.568 | 3210 | 0.0 | - |
1502
+ | 2.576 | 3220 | 0.0 | - |
1503
+ | 2.584 | 3230 | 0.0 | - |
1504
+ | 2.592 | 3240 | 0.0 | - |
1505
+ | 2.6 | 3250 | 0.0 | - |
1506
+ | 2.608 | 3260 | 0.0 | - |
1507
+ | 2.616 | 3270 | 0.0 | - |
1508
+ | 2.624 | 3280 | 0.0 | - |
1509
+ | 2.632 | 3290 | 0.0 | - |
1510
+ | 2.64 | 3300 | 0.0 | - |
1511
+ | 2.648 | 3310 | 0.0 | - |
1512
+ | 2.656 | 3320 | 0.0 | - |
1513
+ | 2.664 | 3330 | 0.0 | - |
1514
+ | 2.672 | 3340 | 0.0 | - |
1515
+ | 2.68 | 3350 | 0.0 | - |
1516
+ | 2.6880 | 3360 | 0.0 | - |
1517
+ | 2.6960 | 3370 | 0.0 | - |
1518
+ | 2.7040 | 3380 | 0.0 | - |
1519
+ | 2.7120 | 3390 | 0.0 | - |
1520
+ | 2.7200 | 3400 | 0.0 | - |
1521
+ | 2.7280 | 3410 | 0.0 | - |
1522
+ | 2.7360 | 3420 | 0.0 | - |
1523
+ | 2.7440 | 3430 | 0.0 | - |
1524
+ | 2.752 | 3440 | 0.0 | - |
1525
+ | 2.76 | 3450 | 0.0 | - |
1526
+ | 2.768 | 3460 | 0.0 | - |
1527
+ | 2.776 | 3470 | 0.0 | - |
1528
+ | 2.784 | 3480 | 0.0 | - |
1529
+ | 2.792 | 3490 | 0.0 | - |
1530
+ | 2.8 | 3500 | 0.0 | - |
1531
+ | 2.808 | 3510 | 0.0 | - |
1532
+ | 2.816 | 3520 | 0.0 | - |
1533
+ | 2.824 | 3530 | 0.0 | - |
1534
+ | 2.832 | 3540 | 0.0 | - |
1535
+ | 2.84 | 3550 | 0.0 | - |
1536
+ | 2.848 | 3560 | 0.0 | - |
1537
+ | 2.856 | 3570 | 0.0 | - |
1538
+ | 2.864 | 3580 | 0.0 | - |
1539
+ | 2.872 | 3590 | 0.0 | - |
1540
+ | 2.88 | 3600 | 0.0 | - |
1541
+ | 2.888 | 3610 | 0.0 | - |
1542
+ | 2.896 | 3620 | 0.0 | - |
1543
+ | 2.904 | 3630 | 0.0 | - |
1544
+ | 2.912 | 3640 | 0.0 | - |
1545
+ | 2.92 | 3650 | 0.0 | - |
1546
+ | 2.928 | 3660 | 0.0 | - |
1547
+ | 2.936 | 3670 | 0.0 | - |
1548
+ | 2.944 | 3680 | 0.0 | - |
1549
+ | 2.952 | 3690 | 0.0 | - |
1550
+ | 2.96 | 3700 | 0.0 | - |
1551
+ | 2.968 | 3710 | 0.0 | - |
1552
+ | 2.976 | 3720 | 0.0 | - |
1553
+ | 2.984 | 3730 | 0.0 | - |
1554
+ | 2.992 | 3740 | 0.0 | - |
1555
+ | 3.0 | 3750 | 0.0 | 0.0221 |
1556
+
1557
+ ### Framework Versions
1558
+ - Python: 3.10.12
1559
+ - SetFit: 1.1.0
1560
+ - Sentence Transformers: 3.2.0
1561
+ - Transformers: 4.44.2
1562
+ - PyTorch: 2.4.1+cu121
1563
+ - Datasets: 3.0.1
1564
+ - Tokenizers: 0.19.1
1565
+
1566
+ ## Citation
1567
+
1568
+ ### BibTeX
1569
+ ```bibtex
1570
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
1571
+ doi = {10.48550/ARXIV.2209.11055},
1572
+ url = {https://arxiv.org/abs/2209.11055},
1573
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
1574
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
1575
+ title = {Efficient Few-Shot Learning Without Prompts},
1576
+ publisher = {arXiv},
1577
+ year = {2022},
1578
+ copyright = {Creative Commons Attribution 4.0 International}
1579
+ }
1580
+ ```
1581
+
1582
+ <!--
1583
+ ## Glossary
1584
+
1585
+ *Clearly define terms in order to be accessible across audiences.*
1586
+ -->
1587
+
1588
+ <!--
1589
+ ## Model Card Authors
1590
+
1591
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1592
+ -->
1593
+
1594
+ <!--
1595
+ ## Model Card Contact
1596
+
1597
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1598
+ -->
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/My Drive/Fall-2024/models/legal-bert",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_ids": 0,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "position_embedding_type": "absolute",
37
+ "problem_type": "single_label_classification",
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.44.2",
40
+ "type_vocab_size": 2,
41
+ "use_cache": true,
42
+ "vocab_size": 30522
43
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3c89a02f174f4806874fe988cd4df372d2a0be1ea1642cfc1005763398cd1ed
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eb41854eb4b948c9ae29729a4ef45e17eba3a7c4780dc9bfeee217f5e298378
3
+ size 31647
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff