rlanday commited on
Commit
1c115c0
1 Parent(s): 834d019

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1898.70 +/- 98.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44dcc4b121bea737fed7b7d4b941ca30b7c8859415e6796d85b80ed0d22be61c
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab56b280d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab56b28160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab56b281f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab56b28280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fab56b28310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fab56b283a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fab56b28430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab56b284c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fab56b28550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab56b285e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab56b28670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab56b28700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fab56b1df00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1685965067799025339,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA/K1D79vCG+xUAbP3Aisz8so8c/p8Jbvjg8pD7eXHK/7ZP3Pk1ogL++2IG/AN3Fv9DIuT+7vHE+pL9CP1C4ljz2yMI/hMmkvV6JED/+Rdi/tKQyv7zQOD6+zSI/Ou6nPLG6mb/qZ/M+ZDn3v8MKVz/O+AI/nLYRP/Ho+j6VALM/pIhevBp277/4Nog/Cje6vj4fQT9nKi+8zkGbPxqLn78IhWg9V077P9y1Zb8ERy8/ZCCMvhukvT8WdDA/++zmPEFA2T7UoCw/gZM/Pj01E0Cxupm/6mfzPi2LBD8nYZi/iN0Bv+sS7L6qrwQ/UlYRP8TsC8DEp4Y/p0olv7o+575bE4e/7+L+vmZrDD6c4JY+m519v/rwKMD2h0A/fgbmvSDuir7mnfC/+O3APqhs6D4/lCW/BfwEP6fGa76xrQu/aCdVP+pn8z4tiwQ/J2GYv20/vD/JV3Q/0bdnPnYwgz/hQ1K/iFS4v9QPuL7U6Ny/2fnMvn8cxj1ESc0/nqhGQHKC9L7QeUzAFHeOPUKPVz+lr+A81KkMwPkbrL3b7eW/WPtMv59VJzwJjx8/oeo8PrG6mb/qZ/M+LYsEPydhmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABWY++2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhKIPQAAAACevQDAAAAAAEPatr0AAAAAyYD+PwAAAAB1xuq9AAAAAOXc8z8AAAAAW8sePQAAAADtVu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZvRztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD8svj0AAAAAVzb+vwAAAADlIKW8AAAAAMOj9T8AAAAAmOMdvQAAAAD8x/o/AAAAACs23zsAAAAAFV/cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9hMbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVSj69AAAAAEJQ3b8AAAAApa4PvgAAAACj/vQ/AAAAAHZZrT0AAAAAUkjZPwAAAADJuNU9AAAAACdZ3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkVwS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJj5OwAAAAC08+G/AAAAACb5tb0AAAAAakLZPwAAAABMjAy9AAAAABX85T8AAAAA7EQuvQAAAAC3Efq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPLrD63y+MAWyUTegDjAF0lEdArZk5r30wrXV9lChoBkdAmSVDDwYtQWgHTegDaAhHQK2fMrQPZqV1fZQoaAZHQJf/IP07KaJoB03oA2gIR0CtoLAWi1zAdX2UKGgGR0CbeUYCQtBfaAdN6ANoCEdAraM7YwqRU3V9lChoBkdAmwA8BhhH9WgHTegDaAhHQK2mqJ6Y3Nt1fZQoaAZHQJjCu35N47loB03oA2gIR0CtrKTXSSeRdX2UKGgGR0CbrAH7P6bfaAdN6ANoCEdAra4lcpsoD3V9lChoBkdAl/8xvJiiI2gHTegDaAhHQK2wsauwHJN1fZQoaAZHQJaaGv4dp7FoB03oA2gIR0CttB/7rLQpdX2UKGgGR0CZtji7TUiIaAdN6ANoCEdArboNq1w5vXV9lChoBkdAmsoDPBzmwWgHTegDaAhHQK27jwyZa3Z1fZQoaAZHQJoljbUPQOZoB03oA2gIR0CtvheirT6SdX2UKGgGR0Ca+E8E3bVSaAdN6ANoCEdArcF+PFNtZXV9lChoBkdAm/7EhmoR7WgHTegDaAhHQK3Hbj94u9R1fZQoaAZHQJiEC8J2MbZoB03oA2gIR0CtyOoEKVpsdX2UKGgGR0CZJiMTN+spaAdN6ANoCEdArctuC04R3HV9lChoBkdAmfXKhQFcIWgHTegDaAhHQK3O3E9dNWV1fZQoaAZHQJzJhFrl/6RoB03oA2gIR0Ct1MvQv6CUdX2UKGgGR0CcmECBwuM/aAdN6ANoCEdArdZOKZUkwHV9lChoBkdAm7dMfzSThmgHTegDaAhHQK3Y3J0W/Jx1fZQoaAZHQJszWHRCx/xoB03oA2gIR0Ct3E+kP+XJdX2UKGgGR0CblnTbFjusaAdN6ANoCEdAreJD81n/UHV9lChoBkdAmbesh5gPVmgHTegDaAhHQK3jwCp3os91fZQoaAZHQJty1Dst03hoB03oA2gIR0Ct5kwK8cuKdX2UKGgGR0CYxmu1ndweaAdN6ANoCEdArem++oLofXV9lChoBkdAmccH/xUedWgHTegDaAhHQK3vvnU2DQJ1fZQoaAZHQJIy9Wq94/xoB03oA2gIR0Ct8T9mYjSodX2UKGgGR0Caa+d+G47SaAdN6ANoCEdArfPeYtxuK3V9lChoBkdAl9nTCk43m2gHTegDaAhHQK33SqpcX3x1fZQoaAZHQJPYZQk5ZKZoB03oA2gIR0Ct/T+GGmDUdX2UKGgGR0CZGPOLiuMdaAdN6ANoCEdArf6+F10T13V9lChoBkdAmiSz8Lron2gHTegDaAhHQK4BRcbBGhF1fZQoaAZHQJefs0TDfm9oB03oA2gIR0CuBLAUUO/ddX2UKGgGR0CdvtRLK3d9aAdN6ANoCEdArgqkWIoE0XV9lChoBkdAm+6jdYW+G2gHTegDaAhHQK4MIGYa5wx1fZQoaAZHQJoPTPKMefZoB03oA2gIR0CuDq3cQAdXdX2UKGgGR0Cbz1caOxSpaAdN6ANoCEdArhJ9dszl93V9lChoBkdAnL1DXBguy2gHTegDaAhHQK4YaQdS2ph1fZQoaAZHQJkvTHU+cH5oB03oA2gIR0CuGedYfW+XdX2UKGgGR0CZi6ZIQOFyaAdN6ANoCEdArhx4Jmdy1nV9lChoBkdAlEwoUnG83GgHTegDaAhHQK4f7rULDyh1fZQoaAZHQJsnOXOW0JFoB03oA2gIR0CuJd+7L+xXdX2UKGgGR0CYouaYeDFqaAdN6ANoCEdAridZtDUmUnV9lChoBkdAnNonjMmnfmgHTegDaAhHQK4p6rEtNBZ1fZQoaAZHQJzBuwY+B6NoB03oA2gIR0CuLV2bPQfIdX2UKGgGR0Cb13RBu4wzaAdN6ANoCEdArjNUqpcX33V9lChoBkdAm/uxI8QqZ2gHTegDaAhHQK40y6p5u651fZQoaAZHQJy5DTTfBN5oB03oA2gIR0CuN1Ng0CRwdX2UKGgGR0CZIwESuhboaAdN6ANoCEdArjrAu01IiHV9lChoBkdAlqQ6iXY152gHTegDaAhHQK5AuLhJiAl1fZQoaAZHQJp7YWCVbA1oB03oA2gIR0CuQjcsMAmzdX2UKGgGR0CZhtaGYa5xaAdN6ANoCEdArkTEu14PgHV9lChoBkdAl0BnaN+9amgHTegDaAhHQK5IOqvNeMR1fZQoaAZHQJjanPGACnxoB03oA2gIR0CuTjfU4JeFdX2UKGgGR0CZCigdOqNqaAdN6ANoCEdArk+0+C9RJnV9lChoBkdAlnf2xY7q6mgHTegDaAhHQK5SO8PFvQ51fZQoaAZHQJJViW4Vh1FoB03oA2gIR0CuVbLDhtLtdX2UKGgGR0CaTYhOxjaxaAdN6ANoCEdArlufukUKzHV9lChoBkdAneZ6mGdqcmgHTegDaAhHQK5dHwMpgCx1fZQoaAZHQJygsoLG7z1oB03oA2gIR0CuX62ZJCjUdX2UKGgGR0Cb33XDFZPmaAdN6ANoCEdArmMoEQoTf3V9lChoBkdAmBM4YJmdy2gHTegDaAhHQK5pJy8SPEN1fZQoaAZHQJouhQ/HHWBoB03oA2gIR0CuaqfY8Md+dX2UKGgGR0CY4LUeuFHsaAdN6ANoCEdArm0yKLsKLXV9lChoBkdAlnLhlUZNwmgHTegDaAhHQK5wmhUR3/x1fZQoaAZHQJX3KM4tHx1oB03oA2gIR0CudpN1hb4bdX2UKGgGR0CQDAf6XSjQaAdN6ANoCEdArngKYLLIP3V9lChoBkdAmIBv7vXsgWgHTegDaAhHQK56ml+mWMV1fZQoaAZHQJnYmvhZQpFoB03oA2gIR0CufharNnoQdX2UKGgGR0CbY1uGKyfMaAdN6ANoCEdAroQVKXfIjnV9lChoBkdAjxnU9pyp72gHTegDaAhHQK6FkdVea8Z1fZQoaAZHQJqHZgKF7D5oB03oA2gIR0CuiB9kz41xdX2UKGgGR0Ca/2Ng0CRwaAdN6ANoCEdArouPLV4HHHV9lChoBkdAmjqW3rleW2gHTegDaAhHQK6Rl0AcT8J1fZQoaAZHQJt12HnEETxoB03oA2gIR0Cukxf+jua4dX2UKGgGR0CVRCy+Yc//aAdN6ANoCEdArpWr8WKuS3V9lChoBkdAj02lmnO0LWgHTegDaAhHQK6ZH5cC5mR1fZQoaAZHQJ1whlf7aZhoB03oA2gIR0Cunx6dlNDddX2UKGgGR0CapAtUGVzIaAdN6ANoCEdArqCbftQbdnV9lChoBkdAmucNRzijtWgHTegDaAhHQK6jKTPBzmx1fZQoaAZHQJdihbC79Q5oB03oA2gIR0Cupp9OIqLCdX2UKGgGR0CDH/SPU8V6aAdN6ANoCEdArqyj4FiazHV9lChoBkdAnS1Kc/dIoWgHTegDaAhHQK6uJJJ5E+h1fZQoaAZHQJB6RlJ6IFhoB03oA2gIR0CusLlUZNwjdX2UKGgGR0CZi2xIatLdaAdN6ANoCEdArrQuy3Td+HV9lChoBkdAnZA8+aBqbmgHTegDaAhHQK66L9ph4MZ1fZQoaAZHQJjSta2WpqBoB03oA2gIR0Cuu60163RYdX2UKGgGR0CYiMGDtgKGaAdN6ANoCEdArr47obGWEHV9lChoBkdAnCEn8Kohp2gHTegDaAhHQK7Br1/Ue+51fZQoaAZHQJpobmT1TR9oB03oA2gIR0Cux6lSjxkNdX2UKGgGR0CcKKQxvegtaAdN6ANoCEdArskngLqlg3V9lChoBkdAm8NoBJZntmgHTegDaAhHQK7LtRyfcvd1fZQoaAZHQJs6xCngpBpoB03oA2gIR0CuzziDVYp2dX2UKGgGR0CXyb4EOiFkaAdN6ANoCEdArtU1/QSi/XV9lChoBkdAmUX+XE61cGgHTegDaAhHQK7Ws8scyWR1fZQoaAZHQJ3hfOX3QD5oB03oA2gIR0Cu2TzKLbYcdX2UKGgGR0CZkBDMNc4YaAdN6ANoCEdArtysPFvQ4XV9lChoBkdAm3p8495hSmgHTegDaAhHQK7iqc1fmcR1fZQoaAZHQJWBzowEhaFoB03oA2gIR0Cu5CNnGsFMdX2UKGgGR0CebTz67/XHaAdN6ANoCEdAruaroMa0hXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f03ab1ba2f7b8f37ee3d747ec3b8060d9a0bfbcf1e62cd64df4dbd93a1601ba
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e832949cbf1f9ddb1c3e463c1df85fc81f36a5056929bfc398c265a93eb0410
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab56b280d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab56b28160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab56b281f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab56b28280>", "_build": "<function ActorCriticPolicy._build at 0x7fab56b28310>", "forward": "<function ActorCriticPolicy.forward at 0x7fab56b283a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fab56b28430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab56b284c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab56b28550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab56b285e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab56b28670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab56b28700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fab56b1df00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685965067799025339, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA/K1D79vCG+xUAbP3Aisz8so8c/p8Jbvjg8pD7eXHK/7ZP3Pk1ogL++2IG/AN3Fv9DIuT+7vHE+pL9CP1C4ljz2yMI/hMmkvV6JED/+Rdi/tKQyv7zQOD6+zSI/Ou6nPLG6mb/qZ/M+ZDn3v8MKVz/O+AI/nLYRP/Ho+j6VALM/pIhevBp277/4Nog/Cje6vj4fQT9nKi+8zkGbPxqLn78IhWg9V077P9y1Zb8ERy8/ZCCMvhukvT8WdDA/++zmPEFA2T7UoCw/gZM/Pj01E0Cxupm/6mfzPi2LBD8nYZi/iN0Bv+sS7L6qrwQ/UlYRP8TsC8DEp4Y/p0olv7o+575bE4e/7+L+vmZrDD6c4JY+m519v/rwKMD2h0A/fgbmvSDuir7mnfC/+O3APqhs6D4/lCW/BfwEP6fGa76xrQu/aCdVP+pn8z4tiwQ/J2GYv20/vD/JV3Q/0bdnPnYwgz/hQ1K/iFS4v9QPuL7U6Ny/2fnMvn8cxj1ESc0/nqhGQHKC9L7QeUzAFHeOPUKPVz+lr+A81KkMwPkbrL3b7eW/WPtMv59VJzwJjx8/oeo8PrG6mb/qZ/M+LYsEPydhmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABWY++2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhKIPQAAAACevQDAAAAAAEPatr0AAAAAyYD+PwAAAAB1xuq9AAAAAOXc8z8AAAAAW8sePQAAAADtVu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZvRztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD8svj0AAAAAVzb+vwAAAADlIKW8AAAAAMOj9T8AAAAAmOMdvQAAAAD8x/o/AAAAACs23zsAAAAAFV/cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9hMbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVSj69AAAAAEJQ3b8AAAAApa4PvgAAAACj/vQ/AAAAAHZZrT0AAAAAUkjZPwAAAADJuNU9AAAAACdZ3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkVwS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJj5OwAAAAC08+G/AAAAACb5tb0AAAAAakLZPwAAAABMjAy9AAAAABX85T8AAAAA7EQuvQAAAAC3Efq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPLrD63y+MAWyUTegDjAF0lEdArZk5r30wrXV9lChoBkdAmSVDDwYtQWgHTegDaAhHQK2fMrQPZqV1fZQoaAZHQJf/IP07KaJoB03oA2gIR0CtoLAWi1zAdX2UKGgGR0CbeUYCQtBfaAdN6ANoCEdAraM7YwqRU3V9lChoBkdAmwA8BhhH9WgHTegDaAhHQK2mqJ6Y3Nt1fZQoaAZHQJjCu35N47loB03oA2gIR0CtrKTXSSeRdX2UKGgGR0CbrAH7P6bfaAdN6ANoCEdAra4lcpsoD3V9lChoBkdAl/8xvJiiI2gHTegDaAhHQK2wsauwHJN1fZQoaAZHQJaaGv4dp7FoB03oA2gIR0CttB/7rLQpdX2UKGgGR0CZtji7TUiIaAdN6ANoCEdArboNq1w5vXV9lChoBkdAmsoDPBzmwWgHTegDaAhHQK27jwyZa3Z1fZQoaAZHQJoljbUPQOZoB03oA2gIR0CtvheirT6SdX2UKGgGR0Ca+E8E3bVSaAdN6ANoCEdArcF+PFNtZXV9lChoBkdAm/7EhmoR7WgHTegDaAhHQK3Hbj94u9R1fZQoaAZHQJiEC8J2MbZoB03oA2gIR0CtyOoEKVpsdX2UKGgGR0CZJiMTN+spaAdN6ANoCEdArctuC04R3HV9lChoBkdAmfXKhQFcIWgHTegDaAhHQK3O3E9dNWV1fZQoaAZHQJzJhFrl/6RoB03oA2gIR0Ct1MvQv6CUdX2UKGgGR0CcmECBwuM/aAdN6ANoCEdArdZOKZUkwHV9lChoBkdAm7dMfzSThmgHTegDaAhHQK3Y3J0W/Jx1fZQoaAZHQJszWHRCx/xoB03oA2gIR0Ct3E+kP+XJdX2UKGgGR0CblnTbFjusaAdN6ANoCEdAreJD81n/UHV9lChoBkdAmbesh5gPVmgHTegDaAhHQK3jwCp3os91fZQoaAZHQJty1Dst03hoB03oA2gIR0Ct5kwK8cuKdX2UKGgGR0CYxmu1ndweaAdN6ANoCEdArem++oLofXV9lChoBkdAmccH/xUedWgHTegDaAhHQK3vvnU2DQJ1fZQoaAZHQJIy9Wq94/xoB03oA2gIR0Ct8T9mYjSodX2UKGgGR0Caa+d+G47SaAdN6ANoCEdArfPeYtxuK3V9lChoBkdAl9nTCk43m2gHTegDaAhHQK33SqpcX3x1fZQoaAZHQJPYZQk5ZKZoB03oA2gIR0Ct/T+GGmDUdX2UKGgGR0CZGPOLiuMdaAdN6ANoCEdArf6+F10T13V9lChoBkdAmiSz8Lron2gHTegDaAhHQK4BRcbBGhF1fZQoaAZHQJefs0TDfm9oB03oA2gIR0CuBLAUUO/ddX2UKGgGR0CdvtRLK3d9aAdN6ANoCEdArgqkWIoE0XV9lChoBkdAm+6jdYW+G2gHTegDaAhHQK4MIGYa5wx1fZQoaAZHQJoPTPKMefZoB03oA2gIR0CuDq3cQAdXdX2UKGgGR0Cbz1caOxSpaAdN6ANoCEdArhJ9dszl93V9lChoBkdAnL1DXBguy2gHTegDaAhHQK4YaQdS2ph1fZQoaAZHQJkvTHU+cH5oB03oA2gIR0CuGedYfW+XdX2UKGgGR0CZi6ZIQOFyaAdN6ANoCEdArhx4Jmdy1nV9lChoBkdAlEwoUnG83GgHTegDaAhHQK4f7rULDyh1fZQoaAZHQJsnOXOW0JFoB03oA2gIR0CuJd+7L+xXdX2UKGgGR0CYouaYeDFqaAdN6ANoCEdAridZtDUmUnV9lChoBkdAnNonjMmnfmgHTegDaAhHQK4p6rEtNBZ1fZQoaAZHQJzBuwY+B6NoB03oA2gIR0CuLV2bPQfIdX2UKGgGR0Cb13RBu4wzaAdN6ANoCEdArjNUqpcX33V9lChoBkdAm/uxI8QqZ2gHTegDaAhHQK40y6p5u651fZQoaAZHQJy5DTTfBN5oB03oA2gIR0CuN1Ng0CRwdX2UKGgGR0CZIwESuhboaAdN6ANoCEdArjrAu01IiHV9lChoBkdAlqQ6iXY152gHTegDaAhHQK5AuLhJiAl1fZQoaAZHQJp7YWCVbA1oB03oA2gIR0CuQjcsMAmzdX2UKGgGR0CZhtaGYa5xaAdN6ANoCEdArkTEu14PgHV9lChoBkdAl0BnaN+9amgHTegDaAhHQK5IOqvNeMR1fZQoaAZHQJjanPGACnxoB03oA2gIR0CuTjfU4JeFdX2UKGgGR0CZCigdOqNqaAdN6ANoCEdArk+0+C9RJnV9lChoBkdAlnf2xY7q6mgHTegDaAhHQK5SO8PFvQ51fZQoaAZHQJJViW4Vh1FoB03oA2gIR0CuVbLDhtLtdX2UKGgGR0CaTYhOxjaxaAdN6ANoCEdArlufukUKzHV9lChoBkdAneZ6mGdqcmgHTegDaAhHQK5dHwMpgCx1fZQoaAZHQJygsoLG7z1oB03oA2gIR0CuX62ZJCjUdX2UKGgGR0Cb33XDFZPmaAdN6ANoCEdArmMoEQoTf3V9lChoBkdAmBM4YJmdy2gHTegDaAhHQK5pJy8SPEN1fZQoaAZHQJouhQ/HHWBoB03oA2gIR0CuaqfY8Md+dX2UKGgGR0CY4LUeuFHsaAdN6ANoCEdArm0yKLsKLXV9lChoBkdAlnLhlUZNwmgHTegDaAhHQK5wmhUR3/x1fZQoaAZHQJX3KM4tHx1oB03oA2gIR0CudpN1hb4bdX2UKGgGR0CQDAf6XSjQaAdN6ANoCEdArngKYLLIP3V9lChoBkdAmIBv7vXsgWgHTegDaAhHQK56ml+mWMV1fZQoaAZHQJnYmvhZQpFoB03oA2gIR0CufharNnoQdX2UKGgGR0CbY1uGKyfMaAdN6ANoCEdAroQVKXfIjnV9lChoBkdAjxnU9pyp72gHTegDaAhHQK6FkdVea8Z1fZQoaAZHQJqHZgKF7D5oB03oA2gIR0CuiB9kz41xdX2UKGgGR0Ca/2Ng0CRwaAdN6ANoCEdArouPLV4HHHV9lChoBkdAmjqW3rleW2gHTegDaAhHQK6Rl0AcT8J1fZQoaAZHQJt12HnEETxoB03oA2gIR0Cukxf+jua4dX2UKGgGR0CVRCy+Yc//aAdN6ANoCEdArpWr8WKuS3V9lChoBkdAj02lmnO0LWgHTegDaAhHQK6ZH5cC5mR1fZQoaAZHQJ1whlf7aZhoB03oA2gIR0Cunx6dlNDddX2UKGgGR0CapAtUGVzIaAdN6ANoCEdArqCbftQbdnV9lChoBkdAmucNRzijtWgHTegDaAhHQK6jKTPBzmx1fZQoaAZHQJdihbC79Q5oB03oA2gIR0Cupp9OIqLCdX2UKGgGR0CDH/SPU8V6aAdN6ANoCEdArqyj4FiazHV9lChoBkdAnS1Kc/dIoWgHTegDaAhHQK6uJJJ5E+h1fZQoaAZHQJB6RlJ6IFhoB03oA2gIR0CusLlUZNwjdX2UKGgGR0CZi2xIatLdaAdN6ANoCEdArrQuy3Td+HV9lChoBkdAnZA8+aBqbmgHTegDaAhHQK66L9ph4MZ1fZQoaAZHQJjSta2WpqBoB03oA2gIR0Cuu60163RYdX2UKGgGR0CYiMGDtgKGaAdN6ANoCEdArr47obGWEHV9lChoBkdAnCEn8Kohp2gHTegDaAhHQK7Br1/Ue+51fZQoaAZHQJpobmT1TR9oB03oA2gIR0Cux6lSjxkNdX2UKGgGR0CcKKQxvegtaAdN6ANoCEdArskngLqlg3V9lChoBkdAm8NoBJZntmgHTegDaAhHQK7LtRyfcvd1fZQoaAZHQJs6xCngpBpoB03oA2gIR0CuzziDVYp2dX2UKGgGR0CXyb4EOiFkaAdN6ANoCEdArtU1/QSi/XV9lChoBkdAmUX+XE61cGgHTegDaAhHQK7Ws8scyWR1fZQoaAZHQJ3hfOX3QD5oB03oA2gIR0Cu2TzKLbYcdX2UKGgGR0CZkBDMNc4YaAdN6ANoCEdArtysPFvQ4XV9lChoBkdAm3p8495hSmgHTegDaAhHQK7iqc1fmcR1fZQoaAZHQJWBzowEhaFoB03oA2gIR0Cu5CNnGsFMdX2UKGgGR0CebTz67/XHaAdN6ANoCEdAruaroMa0hXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ca51affcaeac35aeb22aeebd3eb74c6da660f908cc5d2f94be30a206bc46f69
3
+ size 1097138
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1898.7047660154524, "std_reward": 98.07807469988792, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T12:40:59.448819"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c25af2cd6fc22191f7f5ec7dd00a3e091545020bac0cce342ec3afe1556176d5
3
+ size 2176