Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1898.70 +/- 98.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44dcc4b121bea737fed7b7d4b941ca30b7c8859415e6796d85b80ed0d22be61c
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fab56b280d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab56b28160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab56b281f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab56b28280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fab56b28310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fab56b283a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fab56b28430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab56b284c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fab56b28550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab56b285e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab56b28670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab56b28700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fab56b1df00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1685965067799025339,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA/K1D79vCG+xUAbP3Aisz8so8c/p8Jbvjg8pD7eXHK/7ZP3Pk1ogL++2IG/AN3Fv9DIuT+7vHE+pL9CP1C4ljz2yMI/hMmkvV6JED/+Rdi/tKQyv7zQOD6+zSI/Ou6nPLG6mb/qZ/M+ZDn3v8MKVz/O+AI/nLYRP/Ho+j6VALM/pIhevBp277/4Nog/Cje6vj4fQT9nKi+8zkGbPxqLn78IhWg9V077P9y1Zb8ERy8/ZCCMvhukvT8WdDA/++zmPEFA2T7UoCw/gZM/Pj01E0Cxupm/6mfzPi2LBD8nYZi/iN0Bv+sS7L6qrwQ/UlYRP8TsC8DEp4Y/p0olv7o+575bE4e/7+L+vmZrDD6c4JY+m519v/rwKMD2h0A/fgbmvSDuir7mnfC/+O3APqhs6D4/lCW/BfwEP6fGa76xrQu/aCdVP+pn8z4tiwQ/J2GYv20/vD/JV3Q/0bdnPnYwgz/hQ1K/iFS4v9QPuL7U6Ny/2fnMvn8cxj1ESc0/nqhGQHKC9L7QeUzAFHeOPUKPVz+lr+A81KkMwPkbrL3b7eW/WPtMv59VJzwJjx8/oeo8PrG6mb/qZ/M+LYsEPydhmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABWY++2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhKIPQAAAACevQDAAAAAAEPatr0AAAAAyYD+PwAAAAB1xuq9AAAAAOXc8z8AAAAAW8sePQAAAADtVu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZvRztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD8svj0AAAAAVzb+vwAAAADlIKW8AAAAAMOj9T8AAAAAmOMdvQAAAAD8x/o/AAAAACs23zsAAAAAFV/cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9hMbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVSj69AAAAAEJQ3b8AAAAApa4PvgAAAACj/vQ/AAAAAHZZrT0AAAAAUkjZPwAAAADJuNU9AAAAACdZ3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkVwS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJj5OwAAAAC08+G/AAAAACb5tb0AAAAAakLZPwAAAABMjAy9AAAAABX85T8AAAAA7EQuvQAAAAC3Efq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPLrD63y+MAWyUTegDjAF0lEdArZk5r30wrXV9lChoBkdAmSVDDwYtQWgHTegDaAhHQK2fMrQPZqV1fZQoaAZHQJf/IP07KaJoB03oA2gIR0CtoLAWi1zAdX2UKGgGR0CbeUYCQtBfaAdN6ANoCEdAraM7YwqRU3V9lChoBkdAmwA8BhhH9WgHTegDaAhHQK2mqJ6Y3Nt1fZQoaAZHQJjCu35N47loB03oA2gIR0CtrKTXSSeRdX2UKGgGR0CbrAH7P6bfaAdN6ANoCEdAra4lcpsoD3V9lChoBkdAl/8xvJiiI2gHTegDaAhHQK2wsauwHJN1fZQoaAZHQJaaGv4dp7FoB03oA2gIR0CttB/7rLQpdX2UKGgGR0CZtji7TUiIaAdN6ANoCEdArboNq1w5vXV9lChoBkdAmsoDPBzmwWgHTegDaAhHQK27jwyZa3Z1fZQoaAZHQJoljbUPQOZoB03oA2gIR0CtvheirT6SdX2UKGgGR0Ca+E8E3bVSaAdN6ANoCEdArcF+PFNtZXV9lChoBkdAm/7EhmoR7WgHTegDaAhHQK3Hbj94u9R1fZQoaAZHQJiEC8J2MbZoB03oA2gIR0CtyOoEKVpsdX2UKGgGR0CZJiMTN+spaAdN6ANoCEdArctuC04R3HV9lChoBkdAmfXKhQFcIWgHTegDaAhHQK3O3E9dNWV1fZQoaAZHQJzJhFrl/6RoB03oA2gIR0Ct1MvQv6CUdX2UKGgGR0CcmECBwuM/aAdN6ANoCEdArdZOKZUkwHV9lChoBkdAm7dMfzSThmgHTegDaAhHQK3Y3J0W/Jx1fZQoaAZHQJszWHRCx/xoB03oA2gIR0Ct3E+kP+XJdX2UKGgGR0CblnTbFjusaAdN6ANoCEdAreJD81n/UHV9lChoBkdAmbesh5gPVmgHTegDaAhHQK3jwCp3os91fZQoaAZHQJty1Dst03hoB03oA2gIR0Ct5kwK8cuKdX2UKGgGR0CYxmu1ndweaAdN6ANoCEdArem++oLofXV9lChoBkdAmccH/xUedWgHTegDaAhHQK3vvnU2DQJ1fZQoaAZHQJIy9Wq94/xoB03oA2gIR0Ct8T9mYjSodX2UKGgGR0Caa+d+G47SaAdN6ANoCEdArfPeYtxuK3V9lChoBkdAl9nTCk43m2gHTegDaAhHQK33SqpcX3x1fZQoaAZHQJPYZQk5ZKZoB03oA2gIR0Ct/T+GGmDUdX2UKGgGR0CZGPOLiuMdaAdN6ANoCEdArf6+F10T13V9lChoBkdAmiSz8Lron2gHTegDaAhHQK4BRcbBGhF1fZQoaAZHQJefs0TDfm9oB03oA2gIR0CuBLAUUO/ddX2UKGgGR0CdvtRLK3d9aAdN6ANoCEdArgqkWIoE0XV9lChoBkdAm+6jdYW+G2gHTegDaAhHQK4MIGYa5wx1fZQoaAZHQJoPTPKMefZoB03oA2gIR0CuDq3cQAdXdX2UKGgGR0Cbz1caOxSpaAdN6ANoCEdArhJ9dszl93V9lChoBkdAnL1DXBguy2gHTegDaAhHQK4YaQdS2ph1fZQoaAZHQJkvTHU+cH5oB03oA2gIR0CuGedYfW+XdX2UKGgGR0CZi6ZIQOFyaAdN6ANoCEdArhx4Jmdy1nV9lChoBkdAlEwoUnG83GgHTegDaAhHQK4f7rULDyh1fZQoaAZHQJsnOXOW0JFoB03oA2gIR0CuJd+7L+xXdX2UKGgGR0CYouaYeDFqaAdN6ANoCEdAridZtDUmUnV9lChoBkdAnNonjMmnfmgHTegDaAhHQK4p6rEtNBZ1fZQoaAZHQJzBuwY+B6NoB03oA2gIR0CuLV2bPQfIdX2UKGgGR0Cb13RBu4wzaAdN6ANoCEdArjNUqpcX33V9lChoBkdAm/uxI8QqZ2gHTegDaAhHQK40y6p5u651fZQoaAZHQJy5DTTfBN5oB03oA2gIR0CuN1Ng0CRwdX2UKGgGR0CZIwESuhboaAdN6ANoCEdArjrAu01IiHV9lChoBkdAlqQ6iXY152gHTegDaAhHQK5AuLhJiAl1fZQoaAZHQJp7YWCVbA1oB03oA2gIR0CuQjcsMAmzdX2UKGgGR0CZhtaGYa5xaAdN6ANoCEdArkTEu14PgHV9lChoBkdAl0BnaN+9amgHTegDaAhHQK5IOqvNeMR1fZQoaAZHQJjanPGACnxoB03oA2gIR0CuTjfU4JeFdX2UKGgGR0CZCigdOqNqaAdN6ANoCEdArk+0+C9RJnV9lChoBkdAlnf2xY7q6mgHTegDaAhHQK5SO8PFvQ51fZQoaAZHQJJViW4Vh1FoB03oA2gIR0CuVbLDhtLtdX2UKGgGR0CaTYhOxjaxaAdN6ANoCEdArlufukUKzHV9lChoBkdAneZ6mGdqcmgHTegDaAhHQK5dHwMpgCx1fZQoaAZHQJygsoLG7z1oB03oA2gIR0CuX62ZJCjUdX2UKGgGR0Cb33XDFZPmaAdN6ANoCEdArmMoEQoTf3V9lChoBkdAmBM4YJmdy2gHTegDaAhHQK5pJy8SPEN1fZQoaAZHQJouhQ/HHWBoB03oA2gIR0CuaqfY8Md+dX2UKGgGR0CY4LUeuFHsaAdN6ANoCEdArm0yKLsKLXV9lChoBkdAlnLhlUZNwmgHTegDaAhHQK5wmhUR3/x1fZQoaAZHQJX3KM4tHx1oB03oA2gIR0CudpN1hb4bdX2UKGgGR0CQDAf6XSjQaAdN6ANoCEdArngKYLLIP3V9lChoBkdAmIBv7vXsgWgHTegDaAhHQK56ml+mWMV1fZQoaAZHQJnYmvhZQpFoB03oA2gIR0CufharNnoQdX2UKGgGR0CbY1uGKyfMaAdN6ANoCEdAroQVKXfIjnV9lChoBkdAjxnU9pyp72gHTegDaAhHQK6FkdVea8Z1fZQoaAZHQJqHZgKF7D5oB03oA2gIR0CuiB9kz41xdX2UKGgGR0Ca/2Ng0CRwaAdN6ANoCEdArouPLV4HHHV9lChoBkdAmjqW3rleW2gHTegDaAhHQK6Rl0AcT8J1fZQoaAZHQJt12HnEETxoB03oA2gIR0Cukxf+jua4dX2UKGgGR0CVRCy+Yc//aAdN6ANoCEdArpWr8WKuS3V9lChoBkdAj02lmnO0LWgHTegDaAhHQK6ZH5cC5mR1fZQoaAZHQJ1whlf7aZhoB03oA2gIR0Cunx6dlNDddX2UKGgGR0CapAtUGVzIaAdN6ANoCEdArqCbftQbdnV9lChoBkdAmucNRzijtWgHTegDaAhHQK6jKTPBzmx1fZQoaAZHQJdihbC79Q5oB03oA2gIR0Cupp9OIqLCdX2UKGgGR0CDH/SPU8V6aAdN6ANoCEdArqyj4FiazHV9lChoBkdAnS1Kc/dIoWgHTegDaAhHQK6uJJJ5E+h1fZQoaAZHQJB6RlJ6IFhoB03oA2gIR0CusLlUZNwjdX2UKGgGR0CZi2xIatLdaAdN6ANoCEdArrQuy3Td+HV9lChoBkdAnZA8+aBqbmgHTegDaAhHQK66L9ph4MZ1fZQoaAZHQJjSta2WpqBoB03oA2gIR0Cuu60163RYdX2UKGgGR0CYiMGDtgKGaAdN6ANoCEdArr47obGWEHV9lChoBkdAnCEn8Kohp2gHTegDaAhHQK7Br1/Ue+51fZQoaAZHQJpobmT1TR9oB03oA2gIR0Cux6lSjxkNdX2UKGgGR0CcKKQxvegtaAdN6ANoCEdArskngLqlg3V9lChoBkdAm8NoBJZntmgHTegDaAhHQK7LtRyfcvd1fZQoaAZHQJs6xCngpBpoB03oA2gIR0CuzziDVYp2dX2UKGgGR0CXyb4EOiFkaAdN6ANoCEdArtU1/QSi/XV9lChoBkdAmUX+XE61cGgHTegDaAhHQK7Ws8scyWR1fZQoaAZHQJ3hfOX3QD5oB03oA2gIR0Cu2TzKLbYcdX2UKGgGR0CZkBDMNc4YaAdN6ANoCEdArtysPFvQ4XV9lChoBkdAm3p8495hSmgHTegDaAhHQK7iqc1fmcR1fZQoaAZHQJWBzowEhaFoB03oA2gIR0Cu5CNnGsFMdX2UKGgGR0CebTz67/XHaAdN6ANoCEdAruaroMa0hXVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f03ab1ba2f7b8f37ee3d747ec3b8060d9a0bfbcf1e62cd64df4dbd93a1601ba
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e832949cbf1f9ddb1c3e463c1df85fc81f36a5056929bfc398c265a93eb0410
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab56b280d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab56b28160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab56b281f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab56b28280>", "_build": "<function ActorCriticPolicy._build at 0x7fab56b28310>", "forward": "<function ActorCriticPolicy.forward at 0x7fab56b283a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fab56b28430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab56b284c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab56b28550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab56b285e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab56b28670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab56b28700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fab56b1df00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685965067799025339, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAA/K1D79vCG+xUAbP3Aisz8so8c/p8Jbvjg8pD7eXHK/7ZP3Pk1ogL++2IG/AN3Fv9DIuT+7vHE+pL9CP1C4ljz2yMI/hMmkvV6JED/+Rdi/tKQyv7zQOD6+zSI/Ou6nPLG6mb/qZ/M+ZDn3v8MKVz/O+AI/nLYRP/Ho+j6VALM/pIhevBp277/4Nog/Cje6vj4fQT9nKi+8zkGbPxqLn78IhWg9V077P9y1Zb8ERy8/ZCCMvhukvT8WdDA/++zmPEFA2T7UoCw/gZM/Pj01E0Cxupm/6mfzPi2LBD8nYZi/iN0Bv+sS7L6qrwQ/UlYRP8TsC8DEp4Y/p0olv7o+575bE4e/7+L+vmZrDD6c4JY+m519v/rwKMD2h0A/fgbmvSDuir7mnfC/+O3APqhs6D4/lCW/BfwEP6fGa76xrQu/aCdVP+pn8z4tiwQ/J2GYv20/vD/JV3Q/0bdnPnYwgz/hQ1K/iFS4v9QPuL7U6Ny/2fnMvn8cxj1ESc0/nqhGQHKC9L7QeUzAFHeOPUKPVz+lr+A81KkMwPkbrL3b7eW/WPtMv59VJzwJjx8/oeo8PrG6mb/qZ/M+LYsEPydhmL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABWY++2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhKIPQAAAACevQDAAAAAAEPatr0AAAAAyYD+PwAAAAB1xuq9AAAAAOXc8z8AAAAAW8sePQAAAADtVu2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZvRztgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD8svj0AAAAAVzb+vwAAAADlIKW8AAAAAMOj9T8AAAAAmOMdvQAAAAD8x/o/AAAAACs23zsAAAAAFV/cvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9hMbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICVSj69AAAAAEJQ3b8AAAAApa4PvgAAAACj/vQ/AAAAAHZZrT0AAAAAUkjZPwAAAADJuNU9AAAAACdZ3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkVwS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJj5OwAAAAC08+G/AAAAACb5tb0AAAAAakLZPwAAAABMjAy9AAAAABX85T8AAAAA7EQuvQAAAAC3Efq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPLrD63y+MAWyUTegDjAF0lEdArZk5r30wrXV9lChoBkdAmSVDDwYtQWgHTegDaAhHQK2fMrQPZqV1fZQoaAZHQJf/IP07KaJoB03oA2gIR0CtoLAWi1zAdX2UKGgGR0CbeUYCQtBfaAdN6ANoCEdAraM7YwqRU3V9lChoBkdAmwA8BhhH9WgHTegDaAhHQK2mqJ6Y3Nt1fZQoaAZHQJjCu35N47loB03oA2gIR0CtrKTXSSeRdX2UKGgGR0CbrAH7P6bfaAdN6ANoCEdAra4lcpsoD3V9lChoBkdAl/8xvJiiI2gHTegDaAhHQK2wsauwHJN1fZQoaAZHQJaaGv4dp7FoB03oA2gIR0CttB/7rLQpdX2UKGgGR0CZtji7TUiIaAdN6ANoCEdArboNq1w5vXV9lChoBkdAmsoDPBzmwWgHTegDaAhHQK27jwyZa3Z1fZQoaAZHQJoljbUPQOZoB03oA2gIR0CtvheirT6SdX2UKGgGR0Ca+E8E3bVSaAdN6ANoCEdArcF+PFNtZXV9lChoBkdAm/7EhmoR7WgHTegDaAhHQK3Hbj94u9R1fZQoaAZHQJiEC8J2MbZoB03oA2gIR0CtyOoEKVpsdX2UKGgGR0CZJiMTN+spaAdN6ANoCEdArctuC04R3HV9lChoBkdAmfXKhQFcIWgHTegDaAhHQK3O3E9dNWV1fZQoaAZHQJzJhFrl/6RoB03oA2gIR0Ct1MvQv6CUdX2UKGgGR0CcmECBwuM/aAdN6ANoCEdArdZOKZUkwHV9lChoBkdAm7dMfzSThmgHTegDaAhHQK3Y3J0W/Jx1fZQoaAZHQJszWHRCx/xoB03oA2gIR0Ct3E+kP+XJdX2UKGgGR0CblnTbFjusaAdN6ANoCEdAreJD81n/UHV9lChoBkdAmbesh5gPVmgHTegDaAhHQK3jwCp3os91fZQoaAZHQJty1Dst03hoB03oA2gIR0Ct5kwK8cuKdX2UKGgGR0CYxmu1ndweaAdN6ANoCEdArem++oLofXV9lChoBkdAmccH/xUedWgHTegDaAhHQK3vvnU2DQJ1fZQoaAZHQJIy9Wq94/xoB03oA2gIR0Ct8T9mYjSodX2UKGgGR0Caa+d+G47SaAdN6ANoCEdArfPeYtxuK3V9lChoBkdAl9nTCk43m2gHTegDaAhHQK33SqpcX3x1fZQoaAZHQJPYZQk5ZKZoB03oA2gIR0Ct/T+GGmDUdX2UKGgGR0CZGPOLiuMdaAdN6ANoCEdArf6+F10T13V9lChoBkdAmiSz8Lron2gHTegDaAhHQK4BRcbBGhF1fZQoaAZHQJefs0TDfm9oB03oA2gIR0CuBLAUUO/ddX2UKGgGR0CdvtRLK3d9aAdN6ANoCEdArgqkWIoE0XV9lChoBkdAm+6jdYW+G2gHTegDaAhHQK4MIGYa5wx1fZQoaAZHQJoPTPKMefZoB03oA2gIR0CuDq3cQAdXdX2UKGgGR0Cbz1caOxSpaAdN6ANoCEdArhJ9dszl93V9lChoBkdAnL1DXBguy2gHTegDaAhHQK4YaQdS2ph1fZQoaAZHQJkvTHU+cH5oB03oA2gIR0CuGedYfW+XdX2UKGgGR0CZi6ZIQOFyaAdN6ANoCEdArhx4Jmdy1nV9lChoBkdAlEwoUnG83GgHTegDaAhHQK4f7rULDyh1fZQoaAZHQJsnOXOW0JFoB03oA2gIR0CuJd+7L+xXdX2UKGgGR0CYouaYeDFqaAdN6ANoCEdAridZtDUmUnV9lChoBkdAnNonjMmnfmgHTegDaAhHQK4p6rEtNBZ1fZQoaAZHQJzBuwY+B6NoB03oA2gIR0CuLV2bPQfIdX2UKGgGR0Cb13RBu4wzaAdN6ANoCEdArjNUqpcX33V9lChoBkdAm/uxI8QqZ2gHTegDaAhHQK40y6p5u651fZQoaAZHQJy5DTTfBN5oB03oA2gIR0CuN1Ng0CRwdX2UKGgGR0CZIwESuhboaAdN6ANoCEdArjrAu01IiHV9lChoBkdAlqQ6iXY152gHTegDaAhHQK5AuLhJiAl1fZQoaAZHQJp7YWCVbA1oB03oA2gIR0CuQjcsMAmzdX2UKGgGR0CZhtaGYa5xaAdN6ANoCEdArkTEu14PgHV9lChoBkdAl0BnaN+9amgHTegDaAhHQK5IOqvNeMR1fZQoaAZHQJjanPGACnxoB03oA2gIR0CuTjfU4JeFdX2UKGgGR0CZCigdOqNqaAdN6ANoCEdArk+0+C9RJnV9lChoBkdAlnf2xY7q6mgHTegDaAhHQK5SO8PFvQ51fZQoaAZHQJJViW4Vh1FoB03oA2gIR0CuVbLDhtLtdX2UKGgGR0CaTYhOxjaxaAdN6ANoCEdArlufukUKzHV9lChoBkdAneZ6mGdqcmgHTegDaAhHQK5dHwMpgCx1fZQoaAZHQJygsoLG7z1oB03oA2gIR0CuX62ZJCjUdX2UKGgGR0Cb33XDFZPmaAdN6ANoCEdArmMoEQoTf3V9lChoBkdAmBM4YJmdy2gHTegDaAhHQK5pJy8SPEN1fZQoaAZHQJouhQ/HHWBoB03oA2gIR0CuaqfY8Md+dX2UKGgGR0CY4LUeuFHsaAdN6ANoCEdArm0yKLsKLXV9lChoBkdAlnLhlUZNwmgHTegDaAhHQK5wmhUR3/x1fZQoaAZHQJX3KM4tHx1oB03oA2gIR0CudpN1hb4bdX2UKGgGR0CQDAf6XSjQaAdN6ANoCEdArngKYLLIP3V9lChoBkdAmIBv7vXsgWgHTegDaAhHQK56ml+mWMV1fZQoaAZHQJnYmvhZQpFoB03oA2gIR0CufharNnoQdX2UKGgGR0CbY1uGKyfMaAdN6ANoCEdAroQVKXfIjnV9lChoBkdAjxnU9pyp72gHTegDaAhHQK6FkdVea8Z1fZQoaAZHQJqHZgKF7D5oB03oA2gIR0CuiB9kz41xdX2UKGgGR0Ca/2Ng0CRwaAdN6ANoCEdArouPLV4HHHV9lChoBkdAmjqW3rleW2gHTegDaAhHQK6Rl0AcT8J1fZQoaAZHQJt12HnEETxoB03oA2gIR0Cukxf+jua4dX2UKGgGR0CVRCy+Yc//aAdN6ANoCEdArpWr8WKuS3V9lChoBkdAj02lmnO0LWgHTegDaAhHQK6ZH5cC5mR1fZQoaAZHQJ1whlf7aZhoB03oA2gIR0Cunx6dlNDddX2UKGgGR0CapAtUGVzIaAdN6ANoCEdArqCbftQbdnV9lChoBkdAmucNRzijtWgHTegDaAhHQK6jKTPBzmx1fZQoaAZHQJdihbC79Q5oB03oA2gIR0Cupp9OIqLCdX2UKGgGR0CDH/SPU8V6aAdN6ANoCEdArqyj4FiazHV9lChoBkdAnS1Kc/dIoWgHTegDaAhHQK6uJJJ5E+h1fZQoaAZHQJB6RlJ6IFhoB03oA2gIR0CusLlUZNwjdX2UKGgGR0CZi2xIatLdaAdN6ANoCEdArrQuy3Td+HV9lChoBkdAnZA8+aBqbmgHTegDaAhHQK66L9ph4MZ1fZQoaAZHQJjSta2WpqBoB03oA2gIR0Cuu60163RYdX2UKGgGR0CYiMGDtgKGaAdN6ANoCEdArr47obGWEHV9lChoBkdAnCEn8Kohp2gHTegDaAhHQK7Br1/Ue+51fZQoaAZHQJpobmT1TR9oB03oA2gIR0Cux6lSjxkNdX2UKGgGR0CcKKQxvegtaAdN6ANoCEdArskngLqlg3V9lChoBkdAm8NoBJZntmgHTegDaAhHQK7LtRyfcvd1fZQoaAZHQJs6xCngpBpoB03oA2gIR0CuzziDVYp2dX2UKGgGR0CXyb4EOiFkaAdN6ANoCEdArtU1/QSi/XV9lChoBkdAmUX+XE61cGgHTegDaAhHQK7Ws8scyWR1fZQoaAZHQJ3hfOX3QD5oB03oA2gIR0Cu2TzKLbYcdX2UKGgGR0CZkBDMNc4YaAdN6ANoCEdArtysPFvQ4XV9lChoBkdAm3p8495hSmgHTegDaAhHQK7iqc1fmcR1fZQoaAZHQJWBzowEhaFoB03oA2gIR0Cu5CNnGsFMdX2UKGgGR0CebTz67/XHaAdN6ANoCEdAruaroMa0hXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ca51affcaeac35aeb22aeebd3eb74c6da660f908cc5d2f94be30a206bc46f69
|
3 |
+
size 1097138
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1898.7047660154524, "std_reward": 98.07807469988792, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T12:40:59.448819"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c25af2cd6fc22191f7f5ec7dd00a3e091545020bac0cce342ec3afe1556176d5
|
3 |
+
size 2176
|