a2c-PandaReachDense-v2 / config.json
rlanday's picture
Initial commit
aad4829
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2dfa3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f2dfa8800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 350080, "_total_timesteps": 350080, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685985958071115257, "learning_rate": 0.0031165015959457986, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ph8cN1zIchZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5xhfP59GAD9FD6M/lVp+P3kBnL63bEo9uCqmP6RKxr/82g0+hBe+v3DmvL+DQVw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcTKAP7pTcT77Drs/l1OhP+dP/L7OyDQ91U3QP40z179d0CW+xNDavzilub9QxAA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADnGF8/n0YAP0UPoz/1Tpg9NxrDus7/jT+VWn4/eQGcvrdsSj2WT4C9qEQrvV427724KqY/pErGv/zaDT4RJS8+px/+Poqw6z6EF76/cOa8v4NBXD99U7q+7WucvaR277+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.8714737 0.5010776 1.2739035 ]\n [ 0.9935697 -0.30469874 0.04942008]\n [ 1.2981787 -1.5491529 0.13853067]\n [-1.4850926 -1.4757824 0.8603746 ]]", "desired_goal": "[[ 1.0015393 0.23567095 1.4613947 ]\n [ 1.2603635 -0.4927971 0.04413681]\n [ 1.6273752 -1.6812607 -0.16192766]\n [-1.709496 -1.4503546 0.5029955 ]]", "observation": "[[ 8.71473730e-01 5.01077592e-01 1.27390349e+00 7.43693486e-02\n -1.48851320e-03 1.10936904e+00]\n [ 9.93569672e-01 -3.04698735e-01 4.94200848e-02 -6.26517981e-02\n -4.18135226e-02 -1.16802916e-01]\n [ 1.29817867e+00 -1.54915285e+00 1.38530672e-01 1.71039835e-01\n 4.96335238e-01 4.60331261e-01]\n [-1.48509264e+00 -1.47578239e+00 8.60374629e-01 -3.63918215e-01\n -7.63777271e-02 -1.87080812e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPILjvW1OW70sMEk9baLTPdXvjjxjzkI+QN2pPXkurD31t38+OnCqvLJS2L0RUwI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11108825 -0.05354159 0.04911821]\n [ 0.10333715 0.01744835 0.19024043]\n [ 0.08294153 0.08407301 0.24972518]\n [-0.02080547 -0.10562648 0.0318175 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkdEBSdj39r+UhpRSlIwBbJRLMowBdJRHQIgk+lyimEZ1fZQoaAZoCWgPQwgPf03WqIfqv5SGlFKUaBVLMmgWR0CIJB2wFC9idX2UKGgGaAloD0MIXknyXN9H9L+UhpRSlGgVSzJoFkdAiCM+HBUJfXV9lChoBmgJaA9DCNtugm+aPu+/lIaUUpRoFUsyaBZHQIgiX2ZiNKh1fZQoaAZoCWgPQwig3SHFAAn0v5SGlFKUaBVLMmgWR0CIKM6gdwNtdX2UKGgGaAloD0MIzywJUFPL77+UhpRSlGgVSzJoFkdAiCfxvFWGRHV9lChoBmgJaA9DCDF72XbaGve/lIaUUpRoFUsyaBZHQIgnEVHnU2F1fZQoaAZoCWgPQwjJrUm3JfLyv5SGlFKUaBVLMmgWR0CIJjOQhfShdX2UKGgGaAloD0MIjPfj9stn9b+UhpRSlGgVSzJoFkdAiCzbZezD43V9lChoBmgJaA9DCEzEW+ffLvC/lIaUUpRoFUsyaBZHQIgr/ra/RE51fZQoaAZoCWgPQwjC24MQkO/yv5SGlFKUaBVLMmgWR0CIKx8OTaCddX2UKGgGaAloD0MIraWAtP9B9L+UhpRSlGgVSzJoFkdAiCpBBiTdL3V9lChoBmgJaA9DCCqoqPqVDvK/lIaUUpRoFUsyaBZHQIgw4wM6RyR1fZQoaAZoCWgPQwgRbjKqDOPtv5SGlFKUaBVLMmgWR0CIMAXXRPXTdX2UKGgGaAloD0MI3J4gsd199L+UhpRSlGgVSzJoFkdAiC8mP5pJw3V9lChoBmgJaA9DCAoRcAhVauy/lIaUUpRoFUsyaBZHQIguSFj/dZd1fZQoaAZoCWgPQwiCyvj3Gdfxv5SGlFKUaBVLMmgWR0CINKP7N0NjdX2UKGgGaAloD0MIMIMxIlFo5b+UhpRSlGgVSzJoFkdAiDPG/WUbDXV9lChoBmgJaA9DCMA+OnXls+i/lIaUUpRoFUsyaBZHQIgy5zvJA+p1fZQoaAZoCWgPQwjjxcIQOX37v5SGlFKUaBVLMmgWR0CIMgnYxtYTdX2UKGgGaAloD0MIPxu5bkp5AcCUhpRSlGgVSzJoFkdAiDhtoi9qUXV9lChoBmgJaA9DCLKhm/2Bsva/lIaUUpRoFUsyaBZHQIg3kONHYpV1fZQoaAZoCWgPQwjJyi+DMSL2v5SGlFKUaBVLMmgWR0CINrAKOT7mdX2UKGgGaAloD0MItkyG4/nM8b+UhpRSlGgVSzJoFkdAiDXROtW+5HV9lChoBmgJaA9DCKMfDafMzfG/lIaUUpRoFUsyaBZHQIg8W5c1O0t1fZQoaAZoCWgPQwi+a9CX3h4AwJSGlFKUaBVLMmgWR0CIO34KQaJidX2UKGgGaAloD0MIyH4WS5H8+b+UhpRSlGgVSzJoFkdAiDqdsi0OVnV9lChoBmgJaA9DCGg9fJkowue/lIaUUpRoFUsyaBZHQIg5vuRcNYt1fZQoaAZoCWgPQwjp0yr6Q/Pzv5SGlFKUaBVLMmgWR0CIQAUUO/cndX2UKGgGaAloD0MIv/BKkue6/7+UhpRSlGgVSzJoFkdAiD8n2qT8pHV9lChoBmgJaA9DCHb9gt2w7fa/lIaUUpRoFUsyaBZHQIg+R+SbH6x1fZQoaAZoCWgPQwhnCp3X2GX3v5SGlFKUaBVLMmgWR0CIPWpXp4bCdX2UKGgGaAloD0MINWPRdHay9b+UhpRSlGgVSzJoFkdAiEPJWmxdIHV9lChoBmgJaA9DCMkiTbwD/Pa/lIaUUpRoFUsyaBZHQIhC66e5Fw11fZQoaAZoCWgPQwhR9MDHYAX5v5SGlFKUaBVLMmgWR0CIQgu9vjwQdX2UKGgGaAloD0MIwYu+gjQj9r+UhpRSlGgVSzJoFkdAiEEtcW0qpnV9lChoBmgJaA9DCMk9Xd2x2Pe/lIaUUpRoFUsyaBZHQIhHgJXyRSx1fZQoaAZoCWgPQwhATS1b68v1v5SGlFKUaBVLMmgWR0CIRqOS4e90dX2UKGgGaAloD0MIZM+ey9Rk+L+UhpRSlGgVSzJoFkdAiEXDvE0iyXV9lChoBmgJaA9DCIZ0eAjjZ/i/lIaUUpRoFUsyaBZHQIhE5Uo8ZDR1fZQoaAZoCWgPQwieeqTBbW30v5SGlFKUaBVLMmgWR0CIS1Q1JlJ6dX2UKGgGaAloD0MI/fohNlh49L+UhpRSlGgVSzJoFkdAiEp3hn8KonV9lChoBmgJaA9DCBQH0O/7N/6/lIaUUpRoFUsyaBZHQIhJl1jiGWV1fZQoaAZoCWgPQwiaX80Bgrn6v5SGlFKUaBVLMmgWR0CISLnQID5kdX2UKGgGaAloD0MI0A1N2ekH/b+UhpRSlGgVSzJoFkdAiE8Tuv2XcHV9lChoBmgJaA9DCO+OjNXmv/C/lIaUUpRoFUsyaBZHQIhONx82Ji11fZQoaAZoCWgPQwi8QEmBBbD1v5SGlFKUaBVLMmgWR0CITVaFmFrVdX2UKGgGaAloD0MIJoqQup29+r+UhpRSlGgVSzJoFkdAiEx5EDyOJnV9lChoBmgJaA9DCHRGlPYGn/m/lIaUUpRoFUsyaBZHQIhSwRmK64F1fZQoaAZoCWgPQwiT/fM0YJDtv5SGlFKUaBVLMmgWR0CIUeUGmk30dX2UKGgGaAloD0MI5YBdTZ6y+L+UhpRSlGgVSzJoFkdAiFEEVvddmnV9lChoBmgJaA9DCHTOT3EcePe/lIaUUpRoFUsyaBZHQIhQJaA4GUx1fZQoaAZoCWgPQwifzD/6Jm0AwJSGlFKUaBVLMmgWR0CIVnFYuCf6dX2UKGgGaAloD0MIs7eU88We/L+UhpRSlGgVSzJoFkdAiFWTlkpZwHV9lChoBmgJaA9DCDE/NzRlp/u/lIaUUpRoFUsyaBZHQIhUs45tFa11fZQoaAZoCWgPQwiw52uWy8b7v5SGlFKUaBVLMmgWR0CIU9WGRFI/dX2UKGgGaAloD0MIzEOmfAiq+b+UhpRSlGgVSzJoFkdAiFrShJyyU3V9lChoBmgJaA9DCIIclDDTtvC/lIaUUpRoFUsyaBZHQIhZ9lkH2RJ1fZQoaAZoCWgPQwiQEru2t7sCwJSGlFKUaBVLMmgWR0CIWRaPCEYgdX2UKGgGaAloD0MIsWmlEMhl97+UhpRSlGgVSzJoFkdAiFg4Qrc0tXV9lChoBmgJaA9DCPA2b5wUpvS/lIaUUpRoFUsyaBZHQIhesR8MNMJ1fZQoaAZoCWgPQwj3deCcEaUCwJSGlFKUaBVLMmgWR0CIXdMRHww1dX2UKGgGaAloD0MIhIQoX9BC6r+UhpRSlGgVSzJoFkdAiFzzch1TznV9lChoBmgJaA9DCBIXgEbpUuy/lIaUUpRoFUsyaBZHQIhcFWGRFJB1fZQoaAZoCWgPQwjJOEayR6j8v5SGlFKUaBVLMmgWR0CIYlFOO802dX2UKGgGaAloD0MInMO12sOe9b+UhpRSlGgVSzJoFkdAiGFzfBN21XV9lChoBmgJaA9DCEzBGmfTUQHAlIaUUpRoFUsyaBZHQIhgk9GI9DB1fZQoaAZoCWgPQwj67evAOWP8v5SGlFKUaBVLMmgWR0CIX7WYnfEXdX2UKGgGaAloD0MITdnpB3VR+L+UhpRSlGgVSzJoFkdAiGY+uV5a/3V9lChoBmgJaA9DCL/zixL0FwfAlIaUUpRoFUsyaBZHQIhlYiHIp6R1fZQoaAZoCWgPQwgraFpiZXT7v5SGlFKUaBVLMmgWR0CIZIN5t3wDdX2UKGgGaAloD0MIK8HicOa3AMCUhpRSlGgVSzJoFkdAiGOlyq+8G3V9lChoBmgJaA9DCFGgT+RJUve/lIaUUpRoFUsyaBZHQIhp03Ov+wV1fZQoaAZoCWgPQwgGLLmKxY8BwJSGlFKUaBVLMmgWR0CIaPXL/0dzdX2UKGgGaAloD0MI7fXuj/eqAsCUhpRSlGgVSzJoFkdAiGgVIAfdRHV9lChoBmgJaA9DCHhGW5VEtvq/lIaUUpRoFUsyaBZHQIhnNtKqXF91fZQoaAZoCWgPQwik+s4vShD4v5SGlFKUaBVLMmgWR0CIbadCE6DHdX2UKGgGaAloD0MIPbfQlQjU+b+UhpRSlGgVSzJoFkdAiGzJlBhQWXV9lChoBmgJaA9DCBX/d0SFqvW/lIaUUpRoFUsyaBZHQIhr6MBIWgx1fZQoaAZoCWgPQwhoz2VqErz2v5SGlFKUaBVLMmgWR0CIawpSaVlgdX2UKGgGaAloD0MIRGywcJLm+L+UhpRSlGgVSzJoFkdAiHF6unuRcXV9lChoBmgJaA9DCGagMv59RvO/lIaUUpRoFUsyaBZHQIhwniNsFdN1fZQoaAZoCWgPQwiynITSF4L1v5SGlFKUaBVLMmgWR0CIb76KtPpIdX2UKGgGaAloD0MIW3ufqkJD+b+UhpRSlGgVSzJoFkdAiG7hAnlXBHV9lChoBmgJaA9DCHLBGfz9ova/lIaUUpRoFUsyaBZHQIh1g7eVLSN1fZQoaAZoCWgPQwjVJk7ud6jzv5SGlFKUaBVLMmgWR0CIdKa7VawEdX2UKGgGaAloD0MI1Ce5wyYy+b+UhpRSlGgVSzJoFkdAiHPHU+cH4XV9lChoBmgJaA9DCP3YJD/iV/S/lIaUUpRoFUsyaBZHQIhy6PluFYd1fZQoaAZoCWgPQwhcOBCSBUz9v5SGlFKUaBVLMmgWR0CIeXaSLZSOdX2UKGgGaAloD0MI+n/VkSN9AsCUhpRSlGgVSzJoFkdAiHiZ2yLQ5XV9lChoBmgJaA9DCAPPvYdLLgDAlIaUUpRoFUsyaBZHQIh3utfXwsp1fZQoaAZoCWgPQwhdwTbiyW4BwJSGlFKUaBVLMmgWR0CIdtxKg7HRdX2UKGgGaAloD0MIPiZSms3j77+UhpRSlGgVSzJoFkdAiH34QarFO3V9lChoBmgJaA9DCMo329yYnvi/lIaUUpRoFUsyaBZHQIh9HBxgiNd1fZQoaAZoCWgPQwjww0FClF8mwJSGlFKUaBVLMmgWR0CIfDy+6Ae8dX2UKGgGaAloD0MIuarsuyK4/r+UhpRSlGgVSzJoFkdAiHth5HEuQXV9lChoBmgJaA9DCMQj8fJ0bvC/lIaUUpRoFUsyaBZHQIiB3QfIS151fZQoaAZoCWgPQwhG0JhJ1Evxv5SGlFKUaBVLMmgWR0CIgQBNmDlHdX2UKGgGaAloD0MIAMrfvaOG87+UhpRSlGgVSzJoFkdAiIAfcvduYXV9lChoBmgJaA9DCOtSI/Qzdfi/lIaUUpRoFUsyaBZHQIh/QYJmdy11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2735, "n_steps": 32, "gamma": 0.9611235834791143, "gae_lambda": 0.8890876649452598, "ent_coef": 2.0106453991847865e-06, "vf_coef": 0.5, "max_grad_norm": 0.6085320475564329, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}