Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +3 -3
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -6.00 +/- 1.65
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05ef382db401659b272038a8731e16ec2eebce870b56744beb56d059ae873ec
|
3 |
+
size 102613
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 0,
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1685979744464998627,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2dfa3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f2dfa8800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685976115224793669, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3ZujP9iXrr4nJpO/6lLVPUU3ob/OIce/curJPo8QgT8VTBq/0u/cPl3bF78n+gI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]]", "desired_goal": "[[ 1.2781941 -0.34100223 -1.1496018 ]\n [ 0.10416205 -1.2594992 -1.5557191 ]\n [ 0.3943668 1.0083178 -0.6027234 ]\n [ 0.43151718 -0.59319097 0.5116295 ]]", "observation": "[[ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwu6vaVzDj6LrgA+vjFhvPwVGb78AR0+fEgJvmDi9z0zPMk97MUIPquxS7oMaFc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09084242 0.13911302 0.12566583]\n [-0.01374477 -0.14949793 0.15332788]\n [-0.13406557 0.12103724 0.09825935]\n [ 0.13356751 -0.00077703 0.21035784]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKpFEL6NYA8CUhpRSlIwBbJRLMowBdJRHQKP+ANmUW2x1fZQoaAZoCWgPQwhhpYKKqv8RwJSGlFKUaBVLMmgWR0Cj/cBtLteEdX2UKGgGaAloD0MIcAfqlEcXDcCUhpRSlGgVSzJoFkdAo/2APmPo3nV9lChoBmgJaA9DCIBjz57L1BHAlIaUUpRoFUsyaBZHQKP9P7gKnel1fZQoaAZoCWgPQwiPjUC8rn8MwJSGlFKUaBVLMmgWR0Cj/vASOBDpdX2UKGgGaAloD0MIpDfcR25tBcCUhpRSlGgVSzJoFkdAo/6vu1F6RnV9lChoBmgJaA9DCJV9VwT/mwPAlIaUUpRoFUsyaBZHQKP+b4t6HCZ1fZQoaAZoCWgPQwglP+JXrGEOwJSGlFKUaBVLMmgWR0Cj/i7TMJQddX2UKGgGaAloD0MIIv5hS482EsCUhpRSlGgVSzJoFkdAo//Z4Oc2BXV9lChoBmgJaA9DCAvrxrsjQxLAlIaUUpRoFUsyaBZHQKP/mYb83uN1fZQoaAZoCWgPQwi/tn76z3oFwJSGlFKUaBVLMmgWR0Cj/1laB7NTdX2UKGgGaAloD0MIt0WZDTJ5EsCUhpRSlGgVSzJoFkdAo/8YqoZQ53V9lChoBmgJaA9DCLq7zob8MxDAlIaUUpRoFUsyaBZHQKQAw/k/8l51fZQoaAZoCWgPQwh1PdF14XcSwJSGlFKUaBVLMmgWR0CkAIOHWSU1dX2UKGgGaAloD0MIAwZJn1YRC8CUhpRSlGgVSzJoFkdApABDTvy9VXV9lChoBmgJaA9DCBps6jwqfv2/lIaUUpRoFUsyaBZHQKQAApZwGW51fZQoaAZoCWgPQwgD6WLTSqEBwJSGlFKUaBVLMmgWR0CkAav4dp7DdX2UKGgGaAloD0MImBO0yeFzBsCUhpRSlGgVSzJoFkdApAFrl90A93V9lChoBmgJaA9DCFde8j/52wzAlIaUUpRoFUsyaBZHQKQBK2d/axp1fZQoaAZoCWgPQwgc7iO3Jp0AwJSGlFKUaBVLMmgWR0CkAOq6nR9gdX2UKGgGaAloD0MI0m70MR/Q/7+UhpRSlGgVSzJoFkdApAKY7eVLSXV9lChoBmgJaA9DCG6iluZWGBDAlIaUUpRoFUsyaBZHQKQCWI9kjHJ1fZQoaAZoCWgPQwgDPj+MEF4UwJSGlFKUaBVLMmgWR0CkAhhmf5DadX2UKGgGaAloD0MI0uRiDKzDBsCUhpRSlGgVSzJoFkdApAHXoC+10HV9lChoBmgJaA9DCLuaPGU1PQvAlIaUUpRoFUsyaBZHQKQDgIk7fYV1fZQoaAZoCWgPQwjsE0AxsmQKwJSGlFKUaBVLMmgWR0CkA0AhStNjdX2UKGgGaAloD0MIEkvK3eeoFMCUhpRSlGgVSzJoFkdApAL/4wh4dXV9lChoBmgJaA9DCBSzXgzlZAjAlIaUUpRoFUsyaBZHQKQCvyo4uK51fZQoaAZoCWgPQwhHV+nuOhsMwJSGlFKUaBVLMmgWR0CkBGmois4ldX2UKGgGaAloD0MIQe+NIQB4CcCUhpRSlGgVSzJoFkdApAQpUxVQynV9lChoBmgJaA9DCFwbKsb5WwnAlIaUUpRoFUsyaBZHQKQD6STyJ9B1fZQoaAZoCWgPQwgNqg1ORH8GwJSGlFKUaBVLMmgWR0CkA6iQtBfKdX2UKGgGaAloD0MInDBhNCu7AcCUhpRSlGgVSzJoFkdApAVTFMqSYHV9lChoBmgJaA9DCNLhIYyfRgvAlIaUUpRoFUsyaBZHQKQFEqtozvZ1fZQoaAZoCWgPQwivP4nPncAEwJSGlFKUaBVLMmgWR0CkBNJuMuOCdX2UKGgGaAloD0MIqmBUUidgC8CUhpRSlGgVSzJoFkdApASR8hLXc3V9lChoBmgJaA9DCKxSeqaX+AzAlIaUUpRoFUsyaBZHQKQGOdmxt551fZQoaAZoCWgPQwisqpffaTILwJSGlFKUaBVLMmgWR0CkBfl8gIQfdX2UKGgGaAloD0MInBiSk4lbDcCUhpRSlGgVSzJoFkdApAW5TsIE83V9lChoBmgJaA9DCBN/FHXmThLAlIaUUpRoFUsyaBZHQKQFeJVsDW91fZQoaAZoCWgPQwjM0k7N5WYHwJSGlFKUaBVLMmgWR0CkByVvVEuydX2UKGgGaAloD0MI9rcE4J9yA8CUhpRSlGgVSzJoFkdApAblEAo5P3V9lChoBmgJaA9DCFt5yf/kDwnAlIaUUpRoFUsyaBZHQKQGpOhTOxB1fZQoaAZoCWgPQwhv8IXJVCEOwJSGlFKUaBVLMmgWR0CkBmRLK3d9dX2UKGgGaAloD0MItafknNhjCMCUhpRSlGgVSzJoFkdApAgLcVQAMnV9lChoBmgJaA9DCDZaDvRQGw3AlIaUUpRoFUsyaBZHQKQHyxFAmiR1fZQoaAZoCWgPQwihuU4jLTUEwJSGlFKUaBVLMmgWR0CkB4rvsqrjdX2UKGgGaAloD0MI98lRgChYDcCUhpRSlGgVSzJoFkdApAdKJCSid3V9lChoBmgJaA9DCFzLZDiefxPAlIaUUpRoFUsyaBZHQKQI9t7a7Ep1fZQoaAZoCWgPQwj+0qI+yb0HwJSGlFKUaBVLMmgWR0CkCLarmyPddX2UKGgGaAloD0MI5pDUQskECsCUhpRSlGgVSzJoFkdApAh2by6MBXV9lChoBmgJaA9DCNbEAl/RTRDAlIaUUpRoFUsyaBZHQKQINaLXL/11fZQoaAZoCWgPQwi8zRsnhdkIwJSGlFKUaBVLMmgWR0CkCd7aZhKEdX2UKGgGaAloD0MIuaZAZmfxEMCUhpRSlGgVSzJoFkdApAmeax5cDHV9lChoBmgJaA9DCI//AkGA3BDAlIaUUpRoFUsyaBZHQKQJXoTwlSl1fZQoaAZoCWgPQwhuMqoM464CwJSGlFKUaBVLMmgWR0CkCR3GOuJUdX2UKGgGaAloD0MIPSe9b3ztBMCUhpRSlGgVSzJoFkdApArInQY1pHV9lChoBmgJaA9DCNU8R+S7FAXAlIaUUpRoFUsyaBZHQKQKiEjgQ6J1fZQoaAZoCWgPQwhAahMn99sFwJSGlFKUaBVLMmgWR0CkCkgRsdkrdX2UKGgGaAloD0MISWb1DrejCsCUhpRSlGgVSzJoFkdApAoHV3EAHXV9lChoBmgJaA9DCDsA4q5epQfAlIaUUpRoFUsyaBZHQKQLsXYUWVN1fZQoaAZoCWgPQwjXFTPC2+MKwJSGlFKUaBVLMmgWR0CkC3EqtozvdX2UKGgGaAloD0MIM/rRcMrcEsCUhpRSlGgVSzJoFkdApAsw/C66KHV9lChoBmgJaA9DCCpWDcLcjhDAlIaUUpRoFUsyaBZHQKQK8DTSb6R1fZQoaAZoCWgPQwgLfbCMDV0CwJSGlFKUaBVLMmgWR0CkDJtOmBOIdX2UKGgGaAloD0MIeLRxxFocBMCUhpRSlGgVSzJoFkdApAxbQw9JSXV9lChoBmgJaA9DCLjlIynpERHAlIaUUpRoFUsyaBZHQKQMGv114gR1fZQoaAZoCWgPQwjWUkDa/yAJwJSGlFKUaBVLMmgWR0CkC9oxYaHcdX2UKGgGaAloD0MIhXgkXp5OBMCUhpRSlGgVSzJoFkdApA2GAwwj+3V9lChoBmgJaA9DCPtz0ZDx2BHAlIaUUpRoFUsyaBZHQKQNRZq20At1fZQoaAZoCWgPQwhmvoOfOID7v5SGlFKUaBVLMmgWR0CkDQWhqTKUdX2UKGgGaAloD0MIw/ARMSWSA8CUhpRSlGgVSzJoFkdApAzE9wFTvXV9lChoBmgJaA9DCL+dRIR/8QbAlIaUUpRoFUsyaBZHQKQOcCvHLid1fZQoaAZoCWgPQwg3+wPltn0QwJSGlFKUaBVLMmgWR0CkDi/P5YYBdX2UKGgGaAloD0MInInpQqw+DMCUhpRSlGgVSzJoFkdApA3vmgam43V9lChoBmgJaA9DCGdEaW/wpQXAlIaUUpRoFUsyaBZHQKQNrt8eCCl1fZQoaAZoCWgPQwiHb2HdeBcCwJSGlFKUaBVLMmgWR0CkD1mMXJo1dX2UKGgGaAloD0MIJ0pCIm3j/L+UhpRSlGgVSzJoFkdApA8ZJEpiJHV9lChoBmgJaA9DCGAF+G7zBgnAlIaUUpRoFUsyaBZHQKQO2TxoZht1fZQoaAZoCWgPQwjNH9PaNJYWwJSGlFKUaBVLMmgWR0CkDpifHxSYdX2UKGgGaAloD0MIeTpXlBKCAsCUhpRSlGgVSzJoFkdApBBFtdiUgXV9lChoBmgJaA9DCFPnUfF/pw3AlIaUUpRoFUsyaBZHQKQQBVbzK9x1fZQoaAZoCWgPQwiAZhAf2DEOwJSGlFKUaBVLMmgWR0CkD8UfYBeYdX2UKGgGaAloD0MI+DO8WYM3/L+UhpRSlGgVSzJoFkdApA+EZBLPEHV9lChoBmgJaA9DCKJdhZSfFAXAlIaUUpRoFUsyaBZHQKQRLWrfcet1fZQoaAZoCWgPQwj5ZwbxgR0FwJSGlFKUaBVLMmgWR0CkEO0Ouq3mdX2UKGgGaAloD0MItmrXhLQGBsCUhpRSlGgVSzJoFkdApBCs7EHdGnV9lChoBmgJaA9DCCDQmbSpegvAlIaUUpRoFUsyaBZHQKQQbCVrylN1fZQoaAZoCWgPQwi69C9JZToSwJSGlFKUaBVLMmgWR0CkEhNIK+i8dX2UKGgGaAloD0MI9G+X/bozDcCUhpRSlGgVSzJoFkdApBHTFyaNM3V9lChoBmgJaA9DCAtgysAB/RHAlIaUUpRoFUsyaBZHQKQRktwrDqJ1fZQoaAZoCWgPQwj4/3HChFEPwJSGlFKUaBVLMmgWR0CkEVIaDPGAdX2UKGgGaAloD0MIl3X/WIhOEMCUhpRSlGgVSzJoFkdApBL8tXgccXV9lChoBmgJaA9DCCWVKeYgaAPAlIaUUpRoFUsyaBZHQKQSvFAmiQF1fZQoaAZoCWgPQwgdIJijx38QwJSGlFKUaBVLMmgWR0CkEnwD3dsSdX2UKGgGaAloD0MISl8IOe9PFcCUhpRSlGgVSzJoFkdApBI7UmUnonV9lChoBmgJaA9DCIhKI2b2ORLAlIaUUpRoFUsyaBZHQKQT5q8Djip1fZQoaAZoCWgPQwijWkQUkzcDwJSGlFKUaBVLMmgWR0CkE6ZHuqm1dX2UKGgGaAloD0MIVMTpJFsdCsCUhpRSlGgVSzJoFkdApBNmCVbA13V9lChoBmgJaA9DCIjyBS0kQATAlIaUUpRoFUsyaBZHQKQTJU2kzoF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0f2dfa3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0f2dfa8800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 0, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685979744464998627, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/vTbRPhxf/Lz12wY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3ZujP9iXrr4nJpO/6lLVPUU3ob/OIce/curJPo8QgT8VTBq/0u/cPl3bF78n+gI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTu9NtE+HF/8vPXbBj+MhxM7JiVvuymtdTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]\n [ 0.40862074 -0.03080707 0.5267938 ]]", "desired_goal": "[[ 1.2781941 -0.34100223 -1.1496018 ]\n [ 0.10416205 -1.2594992 -1.5557191 ]\n [ 0.3943668 1.0083178 -0.6027234 ]\n [ 0.43151718 -0.59319097 0.5116295 ]]", "observation": "[[ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]\n [ 0.40862074 -0.03080707 0.5267938 0.00225112 -0.00364906 0.00374872]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlwu6vaVzDj6LrgA+vjFhvPwVGb78AR0+fEgJvmDi9z0zPMk97MUIPquxS7oMaFc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09084242 0.13911302 0.12566583]\n [-0.01374477 -0.14949793 0.15332788]\n [-0.13406557 0.12103724 0.09825935]\n [ 0.13356751 -0.00077703 0.21035784]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -6.000519580207765, "std_reward": 1.6451644677941502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T15:42:47.083936"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1a56f4041003a7554805d18ad36afceb70df3ac48c22c4db9d61e02ead61aab
|
3 |
+
size 2374
|