Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -1
- a2c-AntBulletEnv-v0/data +47 -48
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- a2c-AntBulletEnv-v0/system_info.txt +6 -6
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1124.88 +/- 103.32
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2d40f5a30b690c5d13ead294b0b894ab87f80d74303cbb67446695d37bfb0a5
|
3 |
+
size 129066
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.8.
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -32,38 +32,64 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"num_timesteps": 2000000,
|
36 |
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
44 |
":type:": "<class 'function'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
-
":serialized:": "
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
"_current_progress_remaining": 0.0,
|
63 |
-
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
@@ -76,32 +102,5 @@
|
|
76 |
"ent_coef": 0.0,
|
77 |
"vf_coef": 0.4,
|
78 |
"max_grad_norm": 0.5,
|
79 |
-
"normalize_advantage": false
|
80 |
-
"observation_space": {
|
81 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
-
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
-
"dtype": "float32",
|
84 |
-
"_shape": [
|
85 |
-
28
|
86 |
-
],
|
87 |
-
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
-
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
-
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
-
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
-
"_np_random": null
|
92 |
-
},
|
93 |
-
"action_space": {
|
94 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
-
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
-
"dtype": "float32",
|
97 |
-
"_shape": [
|
98 |
-
8
|
99 |
-
],
|
100 |
-
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
-
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
-
"bounded_below": "[ True True True True True True True True]",
|
103 |
-
"bounded_above": "[ True True True True True True True True]",
|
104 |
-
"_np_random": null
|
105 |
-
},
|
106 |
-
"n_envs": 4
|
107 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f6a8af550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f6a8af5e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f6a8af670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f6a8af700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3f6a8af790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3f6a8af820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3f6a8af8b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f6a8af940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3f6a8af9d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f6a8afa60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f6a8afaf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f6a8afb80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3f6a8aaae0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZgIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEschZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLHIWUjAFDlHSUUpSMBGhpZ2iUaBIolnAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCkschZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkschZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUschZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAQEBAQEBAQGUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
51 |
+
"dtype": "float32",
|
52 |
+
"shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
"num_timesteps": 2000000,
|
63 |
"_total_timesteps": 2000000,
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1684422162976219236,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
71 |
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVgAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS9ydWJlbi8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB1H4b743rc+F0adPqKexT9mNOs+RH45PtzgGr73fDg/ekiFv3pHIT81N3+/aiicPwvfuL2hALE/yZluvvaRVL5+qOO95z86Phkqnr7VCnA/P84VvgPK3D15LiK/6yk1v2rkZb9FEUE/S8+LPg+YET8ZVHRAqqmjvwZ1cz9uM5K/HruUvyptRT2c0Fe/rT5XPiE+/z6sXPg7SBhDwAIdlbwi0IU+5fgYOzi+J0AIkYA85S6kP5IKEzzySg5Akn7HPMw0KD6omUe6a8wewLk+urxq5GW/GrmpvylgasByEOG/GVR0QD2po78GdXM/bjOSvx67lL8qbUU9nNBXv60+Vz7KKr0+rFz4O1CDSsACHZW8BAa8PuX4GDsAhB1ACJGAPGnsqz+SChM8HwgSQJJ+xzwzx848qJlHulriGsC5Prq8auRlvxq5qb8pYGrAchDhvxlUdECFqKO/BnVzP24zkr8eu5S/Km1FPZzQV7+tPlc+9eN5Pqxc+DscFyTAAh2VvKy1Ij/l+Bg7KWsQQAiRgDxbf7w/kgoTPB3KJUCSfsc8V7dFvqiZR7q3gzfAuT66vGrkZb8auam/KWBqwHIQ4b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZs421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1/MhPAAAAABIEvy/AAAAAIgToj0AAAAALvbwPwAAAAAKtp28AAAAANqr9z8AAAAAhs2+PQAAAAA4FNm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Fs5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLiU47sAAAAAvmjuvwAAAAAEHAs+AAAAAEdn5z8AAAAAsZn2vQAAAABdOvQ/AAAAAIwdzL0AAAAAFZvevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBb3LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBznH29AAAAABlU4b8AAAAAd5ygPAAAAACMkPs/AAAAAG3x7L0AAAAAvMfZPwAAAACG8f48AAAAACqEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYfZE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWszXvAAAAAAKD+y/AAAAAFX5XL0AAAAAOHv5PwAAAABethK9AAAAAMiPAEAAAAAAo2frvQAAAACu+uy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
88 |
"sde_sample_freq": -1,
|
89 |
"_current_progress_remaining": 0.0,
|
|
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4ZzGLk0aaMAWyUTegDjAF0lEdAm0czpPhybXV9lChoBkdAkRSbyYoiLWgHTegDaAhHQJtPCLEUCaJ1fZQoaAZHQI25SoXKr7xoB03oA2gIR0CbTwj4pMHsdX2UKGgGR0CRCVmZVn27aAdN6ANoCEdAm08JT2nKn3V9lChoBkdAjP7TqB3A22gHTegDaAhHQJtVsK3NLUV1fZQoaAZHQJJQPxPO6d1oB03oA2gIR0CbXaa0QbuMdX2UKGgGR0CMjlVAAyVOaAdN6ANoCEdAm12nJgb6xnV9lChoBkdAiTXyY5T6zmgHTegDaAhHQJtdp5iVjZt1fZQoaAZHQIvzu6Ae7tloB03oA2gIR0CbZJ6sySFHdX2UKGgGR0CS0AzIV/MGaAdN6ANoCEdAm2yCUxEfDHV9lChoBkdAjP3G0E5hjWgHTegDaAhHQJtsgpw0fo11fZQoaAZHQI3dpFiKBNFoB03oA2gIR0CbbIL1mJ3xdX2UKGgGR0CLmAOgg5imaAdN6ANoCEdAm3MgKrq+rXV9lChoBkdAk/ur/ffoBGgHTegDaAhHQJt64c6vJRx1fZQoaAZHQIp6hs67ulZoB03oA2gIR0CbeuInBtUGdX2UKGgGR0CR9K90zTF3aAdN6ANoCEdAm3rigPEsKHV9lChoBkdAiHMYAsCkoGgHTegDaAhHQJuBeFlCkXV1fZQoaAZHQJFoJng5zYFoB03oA2gIR0CbiW/s3Q2NdX2UKGgGR0CIOzqDbrTqaAdN6ANoCEdAm4lwRf4REnV9lChoBkdAhmFL92ovSWgHTegDaAhHQJuJcKjSG8F1fZQoaAZHQIM2DnxJ/XpoB03oA2gIR0CbkFM6ij+KdX2UKGgGR0CQfi1MdtEYaAdN6ANoCEdAm5hlDBuXNXV9lChoBkdAkSTJBkZrHmgHTegDaAhHQJuYZZDArQR1fZQoaAZHQI2tSTY/Vy5oB03oA2gIR0CbmGYp2ECedX2UKGgGR0CKyGtCiRGMaAdN6ANoCEdAm58Do+wC83V9lChoBkdAjizCWNWEK2gHTegDaAhHQJum86BAfMh1fZQoaAZHQJHkSOmzjWFoB03oA2gIR0CbpvP2PDHfdX2UKGgGR0CQ3CVpsXSCaAdN6ANoCEdAm6b0Uj9n9XV9lChoBkdAkDP4WtU4rGgHTegDaAhHQJutyBVdX1d1fZQoaAZHQI0YurZJ04loB03oA2gIR0CbtaHtWuHOdX2UKGgGR0CQB3Zl4C6paAdN6ANoCEdAm7WiQxN7B3V9lChoBkdAkzuJQYUFjmgHTegDaAhHQJu1oqJ/G2l1fZQoaAZHQIgM26shgVpoB03oA2gIR0CbvIPX05EMdX2UKGgGR0COpihQFcIJaAdN6ANoCEdAm8RtUGVzIXV9lChoBkdAkFH+bExZdWgHTegDaAhHQJvEbY+Sr5t1fZQoaAZHQIz0K704BFNoB03oA2gIR0CbxG3r2QGOdX2UKGgGR0CQR3vIOpbVaAdN6ANoCEdAm8sfwqiGnHV9lChoBkdAku84YWLxZ2gHTegDaAhHQJvTBxcVxjt1fZQoaAZHQI4idWMju8doB03oA2gIR0Cb0wdpItlJdX2UKGgGR0BzwttDUmUoaAdN6ANoCEdAm9MH1jAi3XV9lChoBkdAjOT5BcAzYWgHTegDaAhHQJvZvnIQvpR1fZQoaAZHQIX8a6Ymb9ZoB03oA2gIR0Cb4eOAy2x6dX2UKGgGR0CROjsJpnHvaAdN6ANoCEdAm+Hj0+TvA3V9lChoBkdAcXhIH1OCXmgHTegDaAhHQJvh5Drqt5l1fZQoaAZHQJB2/dweeWhoB03oA2gIR0Cb6KN/e+EidX2UKGgGR0CI4XUYsNDuaAdN6ANoCEdAm/BQC0WuYHV9lChoBkdAhPY4fW+XaGgHTegDaAhHQJvwUGPgeil1fZQoaAZHQJG9/Tx5LRNoB03oA2gIR0Cb8FDDTBqLdX2UKGgGR0CJuI2m51/2aAdN6ANoCEdAm/cLSiM5wXV9lChoBkdAkDDmMsH0LGgHTegDaAhHQJv+6cXm/351fZQoaAZHQJPeqKgqVhVoB03oA2gIR0Cb/uopx3mndX2UKGgGR0CRXcv5P/JeaAdN6ANoCEdAm/7qfvnbI3V9lChoBkdAkhQ3fyf+TGgHTegDaAhHQJwFWvECNjt1fZQoaAZHQJGrKFQEZBNoB03oA2gIR0CcDST987ZGdX2UKGgGR0CIkFHqeK8+aAdN6ANoCEdAnA0lVxS5y3V9lChoBkdAkWC6pPykK2gHTegDaAhHQJwNJbC79Q51fZQoaAZHQI/UIomXw9doB03oA2gIR0CcE/DZDiOvdX2UKGgGR0CSrBFEAo5QaAdN6ANoCEdAnBvR24d6s3V9lChoBkdAiR4rULDyfGgHTegDaAhHQJwb0i+tbLV1fZQoaAZHQJMd2IoE0SBoB03oA2gIR0CcG9KOktVadX2UKGgGR0CUUUBLPD51aAdN6ANoCEdAnCLJtSAH3XV9lChoBkdAi/aC6xxDLWgHTegDaAhHQJwquLqD9O11fZQoaAZHQJEBYFKTSstoB03oA2gIR0CcKrj+717IdX2UKGgGR0B7ALNY8uBdaAdN6ANoCEdAnCq5YxL0z3V9lChoBkdAkLr+IuXeFmgHTegDaAhHQJwxcBgeA/d1fZQoaAZHQJSQS3MINVloB03oA2gIR0CcOUTQVsUJdX2UKGgGR0CPkDWfbsWwaAdN6ANoCEdAnDlFIAfdRHV9lChoBkdAkUpTsD4gzWgHTegDaAhHQJw5RYHPeHl1fZQoaAZHQJDu3hfjS5RoB03oA2gIR0CcP85ylvZRdX2UKGgGR0CPilBDXvphaAdN6ANoCEdAnEdsh1Tzd3V9lChoBkdAklvDIzWPLmgHTegDaAhHQJxHbNVzZHx1fZQoaAZHQIj0Ah8pkPNoB03oA2gIR0CcR21PnB+GdX2UKGgGR0COWrwjMV1waAdN6ANoCEdAnE4HvDxb0XV9lChoBkdAkzCZD/lyR2gHTegDaAhHQJxVoraufVZ1fZQoaAZHQJKmNZha1TloB03oA2gIR0CcVaL5ylvZdX2UKGgGR0CQNHqj8DSxaAdN6ANoCEdAnFWjYZl4DHV9lChoBkdAj7eNmL9/BmgHTegDaAhHQJxcRw97ngZ1fZQoaAZHQI7/ffbblBBoB03oA2gIR0CcZANdJJ5FdX2UKGgGR0CPlloBaLXMaAdN6ANoCEdAnGQEM9bHInV9lChoBkdAkp62nGbTdGgHTegDaAhHQJxkBR51Ng11fZQoaAZHQJRVhw2l2vBoB03oA2gIR0CcaqifxtpFdX2UKGgGR0CRT9QAMlTnaAdN6ANoCEdAnHJYvvjOs3V9lChoBkdAj77fGlyimGgHTegDaAhHQJxyWQlruYx1fZQoaAZHQJQ1QPz4DcNoB03oA2gIR0CccllfZ26kdX2UKGgGR0CSKC7W/ag3aAdN6ANoCEdAnHjNC7btZ3V9lChoBkdAkzbgV0tAcGgHTegDaAhHQJyAgbBGhEl1fZQoaAZHQI4GrGBFuvVoB03oA2gIR0CcgIIuoP07dX2UKGgGR0CO0O9+PRzBaAdN6ANoCEdAnICCu+yquXV9lChoBkdAkodu0kWykmgHTegDaAhHQJyHMBzV+Zx1fZQoaAZHQI8yKGvfTCtoB03oA2gIR0CcjwtyPuG9dX2UKGgGR0CSkdvEjxCqaAdN6ANoCEdAnI8L2lEZznV9lChoBkdAkv6xJZntfGgHTegDaAhHQJyPDFS88Ld1fZQoaAZHQJHE1mWdEstoB03oA2gIR0CcljIgNgBtdX2UKGgGR0CPKMFNcnmaaAdN6ANoCEdAnJ4m0mdAgXV9lChoBkdAkv+vIbOu72gHTegDaAhHQJyeJx3mmtR1fZQoaAZHQJD3lRgqmTFoB03oA2gIR0Ccnid0JWvKdX2UKGgGR0CQoH8f3evZaAdN6ANoCEdAnKTY7JW/8HV9lChoBkdAj57MLncL0GgHTegDaAhHQJys17kXDWN1fZQoaAZHQJH++G47Rv5oB03oA2gIR0CcrNgUlAu7dX2UKGgGR0CSVZMERraeaAdN6ANoCEdAnKzYe1a4c3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
102 |
"ent_coef": 0.0,
|
103 |
"vf_coef": 0.4,
|
104 |
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6ab1eb6af0c748293af30bf79bb2058eb72a901d4d3df919e0a629f64acd0b8
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b8142858a53d7d6b3de5631e2711b6919a3c1314cda6c60c5c0013f472d8bda
|
3 |
size 56894
|
a2c-AntBulletEnv-v0/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.8.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.22.
|
7 |
-
- Gym: 0.
|
|
|
1 |
+
- OS: Linux-5.15.0-72-generic-x86_64-with-glibc2.29 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.11.0+cu113
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.0
|
7 |
+
- Gym: 0.17.3
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe726a4b550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe726a4b5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe726a4b670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe726a4b700>", "_build": "<function ActorCriticPolicy._build at 0x7fe726a4b790>", "forward": "<function ActorCriticPolicy.forward at 0x7fe726a4b820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe726a4b8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe726a4b940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe726a4b9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe726a4ba60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe726a4baf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe726a4bb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe726a4d200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682448219143219882, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFG0nD6v6x0/2LwnPkIkgD/w4B6/9EqIP7IYlb8twhe++aGbvv4kvD9rMis+uB3lPn4I6z4dO/i+C8k9P4HphT6iYog/Toczv7Jghr8vTtg+BhlAvz/OGz89boc/MLpov1wZhj+CARo/cFBBwCEFjb+ngHg/byY1vw5SCT/SLWw/i/lnvxiUgz/2ERe+UmmqvyttST/ta0q/CRgVQLqe3L4fXXO/s/GOPkxoyb4Uw4M+ZSUkv4lVOb985U4/58b3va9Lo769+Qe/4uqLv/hotj5cGYY/ggEaP6SBqT4hBY2/yKJdP1wakr79JBQ/F3UwP9ib8L1kcQc/33BBv5V7mD3m4+c9BVLAP1nT9D5Er5w+UWXrvh+WQr9jarG+EmGBP8G+Wz+dY56/F3efv0qJuz42Am6+kLVCvGvbHT/01Ti/XBmGP4IBGj+kgak+IQWNv1C4DD+GZku+7LgRP18THT9Tzc6/BHjSvxuFUb8sUgI/gudGPznF/74LJJe+yEy/v1rMPL9av4U/6FbCvm0NPb47VYe/ylAdPoKehr87AFc+fDRhv+ag7L7odo6/CG3XPk9bdL9lxdS/pIGpPiEFjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzD4k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApjj1vQAAAAAuSgDAAAAAALdXET0AAAAA/ivpPwAAAADH/LO9AAAAAKih6D8AAAAAlBXfvQAAAAAXXuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVlozNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPGPEb4AAAAAqOftvwAAAADkqgQ+AAAAAIlC9D8AAAAASxZUPQAAAAB4PQBAAAAAABLaB74AAAAA9QrkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIbzpDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAzZt49AAAAAO2i/r8AAAAAUQDOPQAAAABDYf4/AAAAAEmr9D0AAAAALP3dPwAAAADtk8u9AAAAAL3q778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACO5682AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAot9WvQAAAADfovG/AAAAAMhh7D0AAAAA+k3kPwAAAAClk948AAAAAOs8+T8AAAAAMOvYvAAAAADa696/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKFxPwDvE0mMAWyUTegDjAF0lEdAqr+CzRhMJ3V9lChoBkdAoV0pmqYJFGgHTegDaAhHQKrDPI8QqZt1fZQoaAZHQKJe6+zMRpVoB03oA2gIR0Cqw3ecpb2UdX2UKGgGR0CiQk4DTz/ZaAdN6ANoCEdAqsZ1Vea8YnV9lChoBkdAoBCzupjtomgHTegDaAhHQKrPNxgAp8Z1fZQoaAZHQKBE7XRPXTVoB03oA2gIR0Cq0cXOGCZndX2UKGgGR0Cgr+6XjU/faAdN6ANoCEdAqtHwC4jKPnV9lChoBkdAnL9IdQwbl2gHTegDaAhHQKrT4Fjd56d1fZQoaAZHQKEwnZ8KG+NoB03oA2gIR0Cq24tt65XmdX2UKGgGR0Cgn+NBv73xaAdN6ANoCEdAqt5OHSF493V9lChoBkdAlrM7TtsvZmgHTegDaAhHQKrejPFefI11fZQoaAZHQJyqdfeDWbxoB03oA2gIR0Cq4U9Zq20BdX2UKGgGR0Cfid0b961LaAdN6ANoCEdAquttrsSkCXV9lChoBkdAmdqbcsUZemgHTegDaAhHQKruGGDcuap1fZQoaAZHQJ12v6/IsAhoB03oA2gIR0Cq7kLhR64UdX2UKGgGR0CfUYONo8ISaAdN6ANoCEdAqvA7BsQ/YHV9lChoBkdAn+rX0Gu9vmgHTegDaAhHQKr35S2H+Id1fZQoaAZHQJ2Udq59Vm1oB03oA2gIR0Cq+pWtuDSPdX2UKGgGR0CgxUMVclgMaAdN6ANoCEdAqvrBD9fkWHV9lChoBkdAoYTPDm8ujGgHTegDaAhHQKr9A5+6RQt1fZQoaAZHQJ3t1H6MzdloB03oA2gIR0CrB7HwXqJNdX2UKGgGR0ChAZoLG7z1aAdN6ANoCEdAqwpHjZL7GnV9lChoBkdAocreNHYpUmgHTegDaAhHQKsKcrYGt6p1fZQoaAZHQJ0vLKji4rloB03oA2gIR0CrDHjPWxyGdX2UKGgGR0CaMoA9mpVCaAdN6ANoCEdAqxQnIlt0m3V9lChoBkdAn+vzoyKvV2gHTegDaAhHQKsWwU47zTZ1fZQoaAZHQJ2BP3UQTVVoB03oA2gIR0CrFupSzgMudX2UKGgGR0Cc/CgkC3gDaAdN6ANoCEdAqxjo7aIvanV9lChoBkdAnuFcINVinmgHTegDaAhHQKsjd0SRKYl1fZQoaAZHQJwgOUwBYFJoB03oA2gIR0CrJoIRAbADdX2UKGgGR0Cc64FCb+cZaAdN6ANoCEdAqyasngHeJ3V9lChoBkdAoVHP2Cdz4mgHTegDaAhHQKsoqMkQf6p1fZQoaAZHQJ9Kl3GGVRloB03oA2gIR0CrMCfZmI0qdX2UKGgGR0ChC7U3fhuPaAdN6ANoCEdAqzLP69CeE3V9lChoBkdAoBrr3VTaTWgHTegDaAhHQKsy+FBY3eh1fZQoaAZHQJ9r16X0Gu9oB03oA2gIR0CrNPVLrX18dX2UKGgGR0Ce6MwxFiKBaAdN6ANoCEdAqz5nN3W4E3V9lChoBkdAnJYhmXgLqmgHTegDaAhHQKtCZhjvuw51fZQoaAZHQJ3tx7ngYP5oB03oA2gIR0CrQqiuU2UCdX2UKGgGR0CgT7i7sfJWaAdN6ANoCEdAq0Tfv0AcUHV9lChoBkdAnV+g5WBBiWgHTegDaAhHQKtMj2zv7WN1fZQoaAZHQKE4LM5fdARoB03oA2gIR0CrT0NyPuG9dX2UKGgGR0Cedh/0ulGgaAdN6ANoCEdAq09sN8VpK3V9lChoBkdAoCmnS+g132gHTegDaAhHQKtRZUCq6vt1fZQoaAZHQJ5mPl8w5/9oB03oA2gIR0CrWdNMoMKDdX2UKGgGR0CftroaUA1faAdN6ANoCEdAq13Bx//ecnV9lChoBkdAoG9Lq8lHBmgHTegDaAhHQKteAciGFi91fZQoaAZHQJ30gr5IpYtoB03oA2gIR0CrYQPzWf9QdX2UKGgGR0CgbmaKcd5qaAdN6ANoCEdAq2jRqCYkV3V9lChoBkdAoKDuGO+7DmgHTegDaAhHQKtrWwUQCjl1fZQoaAZHQKB7LrJr+HdoB03oA2gIR0Cra4NDtw71dX2UKGgGR0Cg6g+dkJ8faAdN6ANoCEdAq21psoDxLHV9lChoBkdAn9RuxW1c+2gHTegDaAhHQKt1KafjCHh1fZQoaAZHQJ4jPMA3kxRoB03oA2gIR0CreKLTH80ldX2UKGgGR0Cclev60pmVaAdN6ANoCEdAq3jdzjm0V3V9lChoBkdAoHgPZqVQh2gHTegDaAhHQKt70vWYnfF1fZQoaAZHQJlP67wrlNloB03oA2gIR0CrhNnim2srdX2UKGgGR0CgF70DdP+GaAdN6ANoCEdAq4d3KKYRd3V9lChoBkdAn6FlQVKwp2gHTegDaAhHQKuHn6E8JUp1fZQoaAZHQKBnPFirksBoB03oA2gIR0CriZmI9C/odX2UKGgGR0Ccv7hzeXRgaAdN6ANoCEdAq5FlJrcj7nV9lChoBkdAoGJkiMYMv2gHTegDaAhHQKuUCMPz4Dd1fZQoaAZHQJpg6jcmBvtoB03oA2gIR0CrlEhc7hegdX2UKGgGR0CX+Ln752yLaAdN6ANoCEdAq5cSJAMUh3V9lChoBkdAnwBBw6ySm2gHTegDaAhHQKuhHfPX05F1fZQoaAZHQJzmuqyWzGBoB03oA2gIR0Cro670voNedX2UKGgGR0CdZlvKlpGnaAdN6ANoCEdAq6PYRdyDI3V9lChoBkdAmXqM2m51/2gHTegDaAhHQKulxGGVRk51fZQoaAZHQJ8isTSLIghoB03oA2gIR0CrrVrdepn6dX2UKGgGR0Cec9114gRsaAdN6ANoCEdAq7AEZgogFHV9lChoBkdAn1on9JjDsWgHTegDaAhHQKuwM2oegct1fZQoaAZHQH1WCVrylN1oB03oA2gIR0CrskIDYAbRdX2UKGgGR0CgML0KJEYwaAdN6ANoCEdAq70frnkkr3V9lChoBkdAn0fQ3974SGgHTegDaAhHQKu/pc45tFd1fZQoaAZHQJ4FZubZvk1oB03oA2gIR0Crv8+MhougdX2UKGgGR0Ce3mAmAskIaAdN6ANoCEdAq8G4G6f8M3V9lChoBkdAoBBfx2B8QmgHTegDaAhHQKvJNqYZ2p11fZQoaAZHQKAQoe6qbSZoB03oA2gIR0Cry7giFCb+dX2UKGgGR0Cf5jPtlZoxaAdN6ANoCEdAq8vgV6/qPnV9lChoBkdAoWMV9ph4MWgHTegDaAhHQKvNxQdCE6F1fZQoaAZHQKCXQXLNfPZoB03oA2gIR0Cr109vS+g2dX2UKGgGR0CgYqJA2Q4kaAdN6ANoCEdAq9sQYHgP3HV9lChoBkdAoWnv3ztkWmgHTegDaAhHQKvbOREF4cF1fZQoaAZHQKBqZplBhQZoB03oA2gIR0Cr3R4c3l0YdX2UKGgGR0Cgt8euV5bAaAdN6ANoCEdAq+SmIyj59HV9lChoBkdAoNFeTcIqsmgHTegDaAhHQKvnNms/6ft1fZQoaAZHQKCuKaWHDaZoB03oA2gIR0Cr52Arxy4ndX2UKGgGR0Ca8L0jC53DaAdN6ANoCEdAq+lQrQPZqXV9lChoBkdAn8v7D2rXDmgHTegDaAhHQKvx7VfeDWd1fZQoaAZHQJoFHCqIacZoB03oA2gIR0Cr9fc7p3X7dX2UKGgGR0CbcIhPTG5uaAdN6ANoCEdAq/Y2EoOQQ3V9lChoBkdAnSMCFsYVI2gHTegDaAhHQKv5MZnctXh1fZQoaAZHQKDD07+1jRVoB03oA2gIR0CsAOrv9cbBdX2UKGgGR0CeLk38XN1RaAdN6ANoCEdArAOBTZQHiXV9lChoBkdAmq8rb5/LDGgHTegDaAhHQKwDq5R0lqt1fZQoaAZHQJqAI4rBj4JoB03oA2gIR0CsBZ8yvcJudX2UKGgGR0CboQxFiKBNaAdN6ANoCEdArA0iK508vHV9lChoBkdAnsNDfixVyWgHTegDaAhHQKwQ5RkVerx1fZQoaAZHQJzP0ikfs/poB03oA2gIR0CsESGTLW7OdX2UKGgGR0CaND6JqIrOaAdN6ANoCEdArBQwc5sCT3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f6a8af550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f6a8af5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f6a8af670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f6a8af700>", "_build": "<function ActorCriticPolicy._build at 0x7f3f6a8af790>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f6a8af820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3f6a8af8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f6a8af940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f6a8af9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f6a8afa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f6a8afaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f6a8afb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f6a8aaae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEschZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLHIWUjAFDlHSUUpSMBGhpZ2iUaBIolnAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCkschZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYkschZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolhwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUschZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAQEBAQEBAQGUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684422162976219236, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVgAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS9ydWJlbi8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB1H4b743rc+F0adPqKexT9mNOs+RH45PtzgGr73fDg/ekiFv3pHIT81N3+/aiicPwvfuL2hALE/yZluvvaRVL5+qOO95z86Phkqnr7VCnA/P84VvgPK3D15LiK/6yk1v2rkZb9FEUE/S8+LPg+YET8ZVHRAqqmjvwZ1cz9uM5K/HruUvyptRT2c0Fe/rT5XPiE+/z6sXPg7SBhDwAIdlbwi0IU+5fgYOzi+J0AIkYA85S6kP5IKEzzySg5Akn7HPMw0KD6omUe6a8wewLk+urxq5GW/GrmpvylgasByEOG/GVR0QD2po78GdXM/bjOSvx67lL8qbUU9nNBXv60+Vz7KKr0+rFz4O1CDSsACHZW8BAa8PuX4GDsAhB1ACJGAPGnsqz+SChM8HwgSQJJ+xzwzx848qJlHulriGsC5Prq8auRlvxq5qb8pYGrAchDhvxlUdECFqKO/BnVzP24zkr8eu5S/Km1FPZzQV7+tPlc+9eN5Pqxc+DscFyTAAh2VvKy1Ij/l+Bg7KWsQQAiRgDxbf7w/kgoTPB3KJUCSfsc8V7dFvqiZR7q3gzfAuT66vGrkZb8auam/KWBqwHIQ4b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACZs421AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1/MhPAAAAABIEvy/AAAAAIgToj0AAAAALvbwPwAAAAAKtp28AAAAANqr9z8AAAAAhs2+PQAAAAA4FNm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2Fs5NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLiU47sAAAAAvmjuvwAAAAAEHAs+AAAAAEdn5z8AAAAAsZn2vQAAAABdOvQ/AAAAAIwdzL0AAAAAFZvevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBb3LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBznH29AAAAABlU4b8AAAAAd5ygPAAAAACMkPs/AAAAAG3x7L0AAAAAvMfZPwAAAACG8f48AAAAACqEAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYfZE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWszXvAAAAAAKD+y/AAAAAFX5XL0AAAAAOHv5PwAAAABethK9AAAAAMiPAEAAAAAAo2frvQAAAACu+uy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI4ZzGLk0aaMAWyUTegDjAF0lEdAm0czpPhybXV9lChoBkdAkRSbyYoiLWgHTegDaAhHQJtPCLEUCaJ1fZQoaAZHQI25SoXKr7xoB03oA2gIR0CbTwj4pMHsdX2UKGgGR0CRCVmZVn27aAdN6ANoCEdAm08JT2nKn3V9lChoBkdAjP7TqB3A22gHTegDaAhHQJtVsK3NLUV1fZQoaAZHQJJQPxPO6d1oB03oA2gIR0CbXaa0QbuMdX2UKGgGR0CMjlVAAyVOaAdN6ANoCEdAm12nJgb6xnV9lChoBkdAiTXyY5T6zmgHTegDaAhHQJtdp5iVjZt1fZQoaAZHQIvzu6Ae7tloB03oA2gIR0CbZJ6sySFHdX2UKGgGR0CS0AzIV/MGaAdN6ANoCEdAm2yCUxEfDHV9lChoBkdAjP3G0E5hjWgHTegDaAhHQJtsgpw0fo11fZQoaAZHQI3dpFiKBNFoB03oA2gIR0CbbIL1mJ3xdX2UKGgGR0CLmAOgg5imaAdN6ANoCEdAm3MgKrq+rXV9lChoBkdAk/ur/ffoBGgHTegDaAhHQJt64c6vJRx1fZQoaAZHQIp6hs67ulZoB03oA2gIR0CbeuInBtUGdX2UKGgGR0CR9K90zTF3aAdN6ANoCEdAm3rigPEsKHV9lChoBkdAiHMYAsCkoGgHTegDaAhHQJuBeFlCkXV1fZQoaAZHQJFoJng5zYFoB03oA2gIR0CbiW/s3Q2NdX2UKGgGR0CIOzqDbrTqaAdN6ANoCEdAm4lwRf4REnV9lChoBkdAhmFL92ovSWgHTegDaAhHQJuJcKjSG8F1fZQoaAZHQIM2DnxJ/XpoB03oA2gIR0CbkFM6ij+KdX2UKGgGR0CQfi1MdtEYaAdN6ANoCEdAm5hlDBuXNXV9lChoBkdAkSTJBkZrHmgHTegDaAhHQJuYZZDArQR1fZQoaAZHQI2tSTY/Vy5oB03oA2gIR0CbmGYp2ECedX2UKGgGR0CKyGtCiRGMaAdN6ANoCEdAm58Do+wC83V9lChoBkdAjizCWNWEK2gHTegDaAhHQJum86BAfMh1fZQoaAZHQJHkSOmzjWFoB03oA2gIR0CbpvP2PDHfdX2UKGgGR0CQ3CVpsXSCaAdN6ANoCEdAm6b0Uj9n9XV9lChoBkdAkDP4WtU4rGgHTegDaAhHQJutyBVdX1d1fZQoaAZHQI0YurZJ04loB03oA2gIR0CbtaHtWuHOdX2UKGgGR0CQB3Zl4C6paAdN6ANoCEdAm7WiQxN7B3V9lChoBkdAkzuJQYUFjmgHTegDaAhHQJu1oqJ/G2l1fZQoaAZHQIgM26shgVpoB03oA2gIR0CbvIPX05EMdX2UKGgGR0COpihQFcIJaAdN6ANoCEdAm8RtUGVzIXV9lChoBkdAkFH+bExZdWgHTegDaAhHQJvEbY+Sr5t1fZQoaAZHQIz0K704BFNoB03oA2gIR0CbxG3r2QGOdX2UKGgGR0CQR3vIOpbVaAdN6ANoCEdAm8sfwqiGnHV9lChoBkdAku84YWLxZ2gHTegDaAhHQJvTBxcVxjt1fZQoaAZHQI4idWMju8doB03oA2gIR0Cb0wdpItlJdX2UKGgGR0BzwttDUmUoaAdN6ANoCEdAm9MH1jAi3XV9lChoBkdAjOT5BcAzYWgHTegDaAhHQJvZvnIQvpR1fZQoaAZHQIX8a6Ymb9ZoB03oA2gIR0Cb4eOAy2x6dX2UKGgGR0CROjsJpnHvaAdN6ANoCEdAm+Hj0+TvA3V9lChoBkdAcXhIH1OCXmgHTegDaAhHQJvh5Drqt5l1fZQoaAZHQJB2/dweeWhoB03oA2gIR0Cb6KN/e+EidX2UKGgGR0CI4XUYsNDuaAdN6ANoCEdAm/BQC0WuYHV9lChoBkdAhPY4fW+XaGgHTegDaAhHQJvwUGPgeil1fZQoaAZHQJG9/Tx5LRNoB03oA2gIR0Cb8FDDTBqLdX2UKGgGR0CJuI2m51/2aAdN6ANoCEdAm/cLSiM5wXV9lChoBkdAkDDmMsH0LGgHTegDaAhHQJv+6cXm/351fZQoaAZHQJPeqKgqVhVoB03oA2gIR0Cb/uopx3mndX2UKGgGR0CRXcv5P/JeaAdN6ANoCEdAm/7qfvnbI3V9lChoBkdAkhQ3fyf+TGgHTegDaAhHQJwFWvECNjt1fZQoaAZHQJGrKFQEZBNoB03oA2gIR0CcDST987ZGdX2UKGgGR0CIkFHqeK8+aAdN6ANoCEdAnA0lVxS5y3V9lChoBkdAkWC6pPykK2gHTegDaAhHQJwNJbC79Q51fZQoaAZHQI/UIomXw9doB03oA2gIR0CcE/DZDiOvdX2UKGgGR0CSrBFEAo5QaAdN6ANoCEdAnBvR24d6s3V9lChoBkdAiR4rULDyfGgHTegDaAhHQJwb0i+tbLV1fZQoaAZHQJMd2IoE0SBoB03oA2gIR0CcG9KOktVadX2UKGgGR0CUUUBLPD51aAdN6ANoCEdAnCLJtSAH3XV9lChoBkdAi/aC6xxDLWgHTegDaAhHQJwquLqD9O11fZQoaAZHQJEBYFKTSstoB03oA2gIR0CcKrj+717IdX2UKGgGR0B7ALNY8uBdaAdN6ANoCEdAnCq5YxL0z3V9lChoBkdAkLr+IuXeFmgHTegDaAhHQJwxcBgeA/d1fZQoaAZHQJSQS3MINVloB03oA2gIR0CcOUTQVsUJdX2UKGgGR0CPkDWfbsWwaAdN6ANoCEdAnDlFIAfdRHV9lChoBkdAkUpTsD4gzWgHTegDaAhHQJw5RYHPeHl1fZQoaAZHQJDu3hfjS5RoB03oA2gIR0CcP85ylvZRdX2UKGgGR0CPilBDXvphaAdN6ANoCEdAnEdsh1Tzd3V9lChoBkdAklvDIzWPLmgHTegDaAhHQJxHbNVzZHx1fZQoaAZHQIj0Ah8pkPNoB03oA2gIR0CcR21PnB+GdX2UKGgGR0COWrwjMV1waAdN6ANoCEdAnE4HvDxb0XV9lChoBkdAkzCZD/lyR2gHTegDaAhHQJxVoraufVZ1fZQoaAZHQJKmNZha1TloB03oA2gIR0CcVaL5ylvZdX2UKGgGR0CQNHqj8DSxaAdN6ANoCEdAnFWjYZl4DHV9lChoBkdAj7eNmL9/BmgHTegDaAhHQJxcRw97ngZ1fZQoaAZHQI7/ffbblBBoB03oA2gIR0CcZANdJJ5FdX2UKGgGR0CPlloBaLXMaAdN6ANoCEdAnGQEM9bHInV9lChoBkdAkp62nGbTdGgHTegDaAhHQJxkBR51Ng11fZQoaAZHQJRVhw2l2vBoB03oA2gIR0CcaqifxtpFdX2UKGgGR0CRT9QAMlTnaAdN6ANoCEdAnHJYvvjOs3V9lChoBkdAj77fGlyimGgHTegDaAhHQJxyWQlruYx1fZQoaAZHQJQ1QPz4DcNoB03oA2gIR0CccllfZ26kdX2UKGgGR0CSKC7W/ag3aAdN6ANoCEdAnHjNC7btZ3V9lChoBkdAkzbgV0tAcGgHTegDaAhHQJyAgbBGhEl1fZQoaAZHQI4GrGBFuvVoB03oA2gIR0CcgIIuoP07dX2UKGgGR0CO0O9+PRzBaAdN6ANoCEdAnICCu+yquXV9lChoBkdAkodu0kWykmgHTegDaAhHQJyHMBzV+Zx1fZQoaAZHQI8yKGvfTCtoB03oA2gIR0CcjwtyPuG9dX2UKGgGR0CSkdvEjxCqaAdN6ANoCEdAnI8L2lEZznV9lChoBkdAkv6xJZntfGgHTegDaAhHQJyPDFS88Ld1fZQoaAZHQJHE1mWdEstoB03oA2gIR0CcljIgNgBtdX2UKGgGR0CPKMFNcnmaaAdN6ANoCEdAnJ4m0mdAgXV9lChoBkdAkv+vIbOu72gHTegDaAhHQJyeJx3mmtR1fZQoaAZHQJD3lRgqmTFoB03oA2gIR0Ccnid0JWvKdX2UKGgGR0CQoH8f3evZaAdN6ANoCEdAnKTY7JW/8HV9lChoBkdAj57MLncL0GgHTegDaAhHQJys17kXDWN1fZQoaAZHQJH++G47Rv5oB03oA2gIR0CcrNgUlAu7dX2UKGgGR0CSVZMERraeaAdN6ANoCEdAnKzYe1a4c3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-72-generic-x86_64-with-glibc2.29 # 79~20.04.1-Ubuntu SMP Thu Apr 20 22:12:07 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.22.0", "Gym": "0.17.3"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a226759deb15672f11d62f0bf0a5d1faebe6d2677a2bd3cb720be9039a57785c
|
3 |
+
size 1060560
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1124.8824183411314, "std_reward": 103.32159767032533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-18T20:28:00.559018"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c5e797c77df1f7796113a19f61d5721063023a5d26639c9707a9457aa616506
|
3 |
+
size 2135
|