Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -4.09 +/- 1.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bcc8663c50602e2eb32029e334fdbb71914bbe5a6b2f1eb53e9c9b922921b60
|
3 |
+
size 108022
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff9dbec7b80>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff9dbecb600>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682532314620314974,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhsbAP8L6ZD5TPqE/SooSv6P3ib9F95G+FbVZv6ZAyz+vd5W/N6d8PTfRK7+Wu3c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]]",
|
38 |
+
"desired_goal": "[[ 1.5060585 0.22361282 1.2597145 ]\n [-0.5724226 -1.0778698 -0.28508964]\n [-0.85041934 1.5879104 -1.167715 ]\n [ 0.06168291 -0.6711611 0.9677061 ]]",
|
39 |
+
"observation": "[[0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhpl6PYGjZL1zWMg9stuju2XQ+L0ypYA+iG1vvcyOmL1Us2k9Hk6qu24Ru7sTOlE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.06118157 -0.05581999 0.09782495]\n [-0.00500055 -0.12149123 0.25126034]\n [-0.05845407 -0.07449111 0.05705579]\n [-0.0051973 -0.00570886 0.2043231 ]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIls6HZwnSCMCUhpRSlIwBbJRLMowBdJRHQKYC10Cih391fZQoaAZoCWgPQwjku5S6ZOwfwJSGlFKUaBVLMmgWR0CmApuF6AvtdX2UKGgGaAloD0MI4/24/fJZEsCUhpRSlGgVSzJoFkdApgJd+kP+XXV9lChoBmgJaA9DCFvptdlY6RDAlIaUUpRoFUsyaBZHQKYCIgBcRlJ1fZQoaAZoCWgPQwjMtz6sN9oSwJSGlFKUaBVLMmgWR0CmA7bNKRMfdX2UKGgGaAloD0MIAMl06PRcE8CUhpRSlGgVSzJoFkdApgN63d9DyHV9lChoBmgJaA9DCGFtjJ3wsgjAlIaUUpRoFUsyaBZHQKYDPTYNAkd1fZQoaAZoCWgPQwgra5vicWETwJSGlFKUaBVLMmgWR0CmAwEtdzGQdX2UKGgGaAloD0MIBmaFIt0fGcCUhpRSlGgVSzJoFkdApgSX8sMAm3V9lChoBmgJaA9DCF2pZ0EoLwfAlIaUUpRoFUsyaBZHQKYEXB2wFC91fZQoaAZoCWgPQwj5TPbP00AFwJSGlFKUaBVLMmgWR0CmBB6isXBQdX2UKGgGaAloD0MIVhADXftCCsCUhpRSlGgVSzJoFkdApgPiqU/wAnV9lChoBmgJaA9DCHGRe7q6UxvAlIaUUpRoFUsyaBZHQKYFeLNOdoZ1fZQoaAZoCWgPQwjl0CLb+a4fwJSGlFKUaBVLMmgWR0CmBTzWwu/UdX2UKGgGaAloD0MIIJc48kC0EMCUhpRSlGgVSzJoFkdApgT/MwDeTHV9lChoBmgJaA9DCKFq9GqAsgbAlIaUUpRoFUsyaBZHQKYEwzAN5MV1fZQoaAZoCWgPQwhPWOIBZZMcwJSGlFKUaBVLMmgWR0CmBleBYmsvdX2UKGgGaAloD0MIGHyakxcZG8CUhpRSlGgVSzJoFkdApgYbn9vS+nV9lChoBmgJaA9DCDj1geSdowXAlIaUUpRoFUsyaBZHQKYF3hXr+o91fZQoaAZoCWgPQwi+MJkqGBUHwJSGlFKUaBVLMmgWR0CmBaJBX0XhdX2UKGgGaAloD0MIEXFzKhlgGMCUhpRSlGgVSzJoFkdApgc5kf9xZXV9lChoBmgJaA9DCCjVPh2POQzAlIaUUpRoFUsyaBZHQKYG/bblA/t1fZQoaAZoCWgPQwjL2xFOC74LwJSGlFKUaBVLMmgWR0CmBsAJswcpdX2UKGgGaAloD0MIGvm84qnnBsCUhpRSlGgVSzJoFkdApgaEJIDoyXV9lChoBmgJaA9DCF1qhH6mnhPAlIaUUpRoFUsyaBZHQKYIE6QvHtF1fZQoaAZoCWgPQwhr1a4JaU0JwJSGlFKUaBVLMmgWR0CmB9e1KGtZdX2UKGgGaAloD0MIPUZ55uXQCMCUhpRSlGgVSzJoFkdApgeaFbmlqXV9lChoBmgJaA9DCAGG5c+3pQrAlIaUUpRoFUsyaBZHQKYHXixVyWB1fZQoaAZoCWgPQwhyo8haQ2kPwJSGlFKUaBVLMmgWR0CmCO/N7jT8dX2UKGgGaAloD0MIcM0d/S+XBMCUhpRSlGgVSzJoFkdApgi0Aiml7HV9lChoBmgJaA9DCEYL0Laa1RbAlIaUUpRoFUsyaBZHQKYIdmYBvJl1fZQoaAZoCWgPQwhYkGYsmp4YwJSGlFKUaBVLMmgWR0CmCDptJnQIdX2UKGgGaAloD0MIWDfeHRkLEcCUhpRSlGgVSzJoFkdApgnRkXk5qHV9lChoBmgJaA9DCFnDRe7pahLAlIaUUpRoFUsyaBZHQKYJlcX3xnZ1fZQoaAZoCWgPQwjjUpW2uIYgwJSGlFKUaBVLMmgWR0CmCVgkka/AdX2UKGgGaAloD0MI7x8L0SEwDsCUhpRSlGgVSzJoFkdApgkcRaouPHV9lChoBmgJaA9DCKn4vyMqNAzAlIaUUpRoFUsyaBZHQKYKs6shgVp1fZQoaAZoCWgPQwh47dKGw9IWwJSGlFKUaBVLMmgWR0CmCnfMnqmkdX2UKGgGaAloD0MIdES+S6lLBsCUhpRSlGgVSzJoFkdApgo6Kcd5p3V9lChoBmgJaA9DCP1s5LopZQvAlIaUUpRoFUsyaBZHQKYJ/jG1hLJ1fZQoaAZoCWgPQwglH7sLlIQRwJSGlFKUaBVLMmgWR0CmC5fqgRK6dX2UKGgGaAloD0MIQC/cuTDSBcCUhpRSlGgVSzJoFkdApgtcCvHLinV9lChoBmgJaA9DCFeYvtcQ3AvAlIaUUpRoFUsyaBZHQKYLHm/336B1fZQoaAZoCWgPQwj3d7ZHb1gNwJSGlFKUaBVLMmgWR0CmCuKcEvCedX2UKGgGaAloD0MIPKBsyhU+CsCUhpRSlGgVSzJoFkdApgxvEwWWQnV9lChoBmgJaA9DCO6XT1YMZxbAlIaUUpRoFUsyaBZHQKYMMx9G7SR1fZQoaAZoCWgPQwg//tKiPikFwJSGlFKUaBVLMmgWR0CmC/WIfr8jdX2UKGgGaAloD0MIzJiCNc4GCsCUhpRSlGgVSzJoFkdApgu5gPVd5nV9lChoBmgJaA9DCJSgv9AjBgnAlIaUUpRoFUsyaBZHQKYNS3y7PIJ1fZQoaAZoCWgPQwjiVkEMdI0XwJSGlFKUaBVLMmgWR0CmDQ+HrQgLdX2UKGgGaAloD0MIq1yo/GvZEcCUhpRSlGgVSzJoFkdApgzR15jYqXV9lChoBmgJaA9DCNRgGoaPWBnAlIaUUpRoFUsyaBZHQKYMldk8Rth1fZQoaAZoCWgPQwhfKGA7GPERwJSGlFKUaBVLMmgWR0CmDii+tbLVdX2UKGgGaAloD0MIvCAiNe0CBMCUhpRSlGgVSzJoFkdApg3s/GEPD3V9lChoBmgJaA9DCFhUxOkkGwzAlIaUUpRoFUsyaBZHQKYNr1TR6Wx1fZQoaAZoCWgPQwhMGqN1VDUCwJSGlFKUaBVLMmgWR0CmDXNVBD5TdX2UKGgGaAloD0MIKXrgY7CSEcCUhpRSlGgVSzJoFkdApg8HQKKHf3V9lChoBmgJaA9DCET9LmzNNg3AlIaUUpRoFUsyaBZHQKYOy4YrJ8x1fZQoaAZoCWgPQwhTexFtx1QRwJSGlFKUaBVLMmgWR0CmDo3sPatcdX2UKGgGaAloD0MI5gMCnUn7CMCUhpRSlGgVSzJoFkdApg5R79hqkHV9lChoBmgJaA9DCFyrPeyF8hrAlIaUUpRoFUsyaBZHQKYP6q7yxzJ1fZQoaAZoCWgPQwiRuTKoNpgJwJSGlFKUaBVLMmgWR0CmD67lA/s3dX2UKGgGaAloD0MIPV+zXDaaBcCUhpRSlGgVSzJoFkdApg9xM36yjnV9lChoBmgJaA9DCIm3zr9dxhDAlIaUUpRoFUsyaBZHQKYPNUONHYp1fZQoaAZoCWgPQwiRfvs6cO4LwJSGlFKUaBVLMmgWR0CmEMS3Td+HdX2UKGgGaAloD0MIPSzUmuYtGMCUhpRSlGgVSzJoFkdAphCI3eenRHV9lChoBmgJaA9DCDDa44V0uAbAlIaUUpRoFUsyaBZHQKYQS0G/vfF1fZQoaAZoCWgPQwjuQ95y9eMIwJSGlFKUaBVLMmgWR0CmEA8v/R3NdX2UKGgGaAloD0MIQFBu2/fIFMCUhpRSlGgVSzJoFkdAphGfbj94vHV9lChoBmgJaA9DCLYvoBfufAvAlIaUUpRoFUsyaBZHQKYRY5uqFRJ1fZQoaAZoCWgPQwhEM0+uKZAUwJSGlFKUaBVLMmgWR0CmESX3YcvNdX2UKGgGaAloD0MIijve5Lc4EMCUhpRSlGgVSzJoFkdAphDqDK5kLHV9lChoBmgJaA9DCBaFXRQ9wBDAlIaUUpRoFUsyaBZHQKYSgCIUJv51fZQoaAZoCWgPQwito6oJos4FwJSGlFKUaBVLMmgWR0CmEkQ97ngYdX2UKGgGaAloD0MIK76h8NkaD8CUhpRSlGgVSzJoFkdAphIGnO0LMXV9lChoBmgJaA9DCOenOA682gPAlIaUUpRoFUsyaBZHQKYRyrWAf+11fZQoaAZoCWgPQwiq8dJNYlAHwJSGlFKUaBVLMmgWR0CmE2PsiSq3dX2UKGgGaAloD0MIRWgEG9fPE8CUhpRSlGgVSzJoFkdAphMoCnxaxHV9lChoBmgJaA9DCG03wTdNDxHAlIaUUpRoFUsyaBZHQKYS6nTiKix1fZQoaAZoCWgPQwgAGxAhrowTwJSGlFKUaBVLMmgWR0CmEq57gKnfdX2UKGgGaAloD0MIc56xL9n4E8CUhpRSlGgVSzJoFkdAphRFSVGCqnV9lChoBmgJaA9DCA/SU+QQkQrAlIaUUpRoFUsyaBZHQKYUCVLSNOx1fZQoaAZoCWgPQwjb2y3JASsRwJSGlFKUaBVLMmgWR0CmE8utOmBOdX2UKGgGaAloD0MIvRqgNNToDsCUhpRSlGgVSzJoFkdAphOPsmfGuXV9lChoBmgJaA9DCF35LM+DOxnAlIaUUpRoFUsyaBZHQKYVI8h9srN1fZQoaAZoCWgPQwjLTGn9LUENwJSGlFKUaBVLMmgWR0CmFOfe+Eh8dX2UKGgGaAloD0MIcsRafAoAE8CUhpRSlGgVSzJoFkdAphSqWom5UnV9lChoBmgJaA9DCNAn8iTp+gfAlIaUUpRoFUsyaBZHQKYUbnU2DQJ1fZQoaAZoCWgPQwh8LH3ogvoOwJSGlFKUaBVLMmgWR0CmFmv5pJwsdX2UKGgGaAloD0MIq7GEtTH2FcCUhpRSlGgVSzJoFkdAphYws/Y8MnV9lChoBmgJaA9DCH9N1qiHyATAlIaUUpRoFUsyaBZHQKYV87TUiIN1fZQoaAZoCWgPQwiZf/RNmnYdwJSGlFKUaBVLMmgWR0CmFbgzP8htdX2UKGgGaAloD0MITb1uERirBcCUhpRSlGgVSzJoFkdAphfHPE87p3V9lChoBmgJaA9DCKrVV1cFSgrAlIaUUpRoFUsyaBZHQKYXi/336AR1fZQoaAZoCWgPQwgqHEEqxY4GwJSGlFKUaBVLMmgWR0CmF075VOsUdX2UKGgGaAloD0MI63Qg66nVCcCUhpRSlGgVSzJoFkdAphcTdi2Dx3V9lChoBmgJaA9DCBu62R8oBxPAlIaUUpRoFUsyaBZHQKYZIMYuTRp1fZQoaAZoCWgPQwhv05/9SLEGwJSGlFKUaBVLMmgWR0CmGOW6shgWdX2UKGgGaAloD0MIyk4/qIsUGsCUhpRSlGgVSzJoFkdAphior+YMOXV9lChoBmgJaA9DCJEr9SwIZR3AlIaUUpRoFUsyaBZHQKYYbTa0x/N1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:225783b685d409b3ca07cb708b2bc679715e8b2dcdd9f9e0688dc3d624439eec
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d76b0b2b06fb72f998a1c0953f14084d519ab1f5ce15aed05fc6593be2b0687
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff9dbec7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9dbecb600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682532314620314974, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/cqffPscUlDxJuhI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhsbAP8L6ZD5TPqE/SooSv6P3ib9F95G+FbVZv6ZAyz+vd5W/N6d8PTfRK7+Wu3c/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTtyp98+xxSUPEm6Ej/Qrmo7WCNDO1jtUTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]\n [0.43682438 0.01807631 0.573155 ]]", "desired_goal": "[[ 1.5060585 0.22361282 1.2597145 ]\n [-0.5724226 -1.0778698 -0.28508964]\n [-0.85041934 1.5879104 -1.167715 ]\n [ 0.06168291 -0.6711611 0.9677061 ]]", "observation": "[[0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]\n [0.43682438 0.01807631 0.573155 0.00358098 0.00297757 0.00320323]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhpl6PYGjZL1zWMg9stuju2XQ+L0ypYA+iG1vvcyOmL1Us2k9Hk6qu24Ru7sTOlE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06118157 -0.05581999 0.09782495]\n [-0.00500055 -0.12149123 0.25126034]\n [-0.05845407 -0.07449111 0.05705579]\n [-0.0051973 -0.00570886 0.2043231 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIls6HZwnSCMCUhpRSlIwBbJRLMowBdJRHQKYC10Cih391fZQoaAZoCWgPQwjku5S6ZOwfwJSGlFKUaBVLMmgWR0CmApuF6AvtdX2UKGgGaAloD0MI4/24/fJZEsCUhpRSlGgVSzJoFkdApgJd+kP+XXV9lChoBmgJaA9DCFvptdlY6RDAlIaUUpRoFUsyaBZHQKYCIgBcRlJ1fZQoaAZoCWgPQwjMtz6sN9oSwJSGlFKUaBVLMmgWR0CmA7bNKRMfdX2UKGgGaAloD0MIAMl06PRcE8CUhpRSlGgVSzJoFkdApgN63d9DyHV9lChoBmgJaA9DCGFtjJ3wsgjAlIaUUpRoFUsyaBZHQKYDPTYNAkd1fZQoaAZoCWgPQwgra5vicWETwJSGlFKUaBVLMmgWR0CmAwEtdzGQdX2UKGgGaAloD0MIBmaFIt0fGcCUhpRSlGgVSzJoFkdApgSX8sMAm3V9lChoBmgJaA9DCF2pZ0EoLwfAlIaUUpRoFUsyaBZHQKYEXB2wFC91fZQoaAZoCWgPQwj5TPbP00AFwJSGlFKUaBVLMmgWR0CmBB6isXBQdX2UKGgGaAloD0MIVhADXftCCsCUhpRSlGgVSzJoFkdApgPiqU/wAnV9lChoBmgJaA9DCHGRe7q6UxvAlIaUUpRoFUsyaBZHQKYFeLNOdoZ1fZQoaAZoCWgPQwjl0CLb+a4fwJSGlFKUaBVLMmgWR0CmBTzWwu/UdX2UKGgGaAloD0MIIJc48kC0EMCUhpRSlGgVSzJoFkdApgT/MwDeTHV9lChoBmgJaA9DCKFq9GqAsgbAlIaUUpRoFUsyaBZHQKYEwzAN5MV1fZQoaAZoCWgPQwhPWOIBZZMcwJSGlFKUaBVLMmgWR0CmBleBYmsvdX2UKGgGaAloD0MIGHyakxcZG8CUhpRSlGgVSzJoFkdApgYbn9vS+nV9lChoBmgJaA9DCDj1geSdowXAlIaUUpRoFUsyaBZHQKYF3hXr+o91fZQoaAZoCWgPQwi+MJkqGBUHwJSGlFKUaBVLMmgWR0CmBaJBX0XhdX2UKGgGaAloD0MIEXFzKhlgGMCUhpRSlGgVSzJoFkdApgc5kf9xZXV9lChoBmgJaA9DCCjVPh2POQzAlIaUUpRoFUsyaBZHQKYG/bblA/t1fZQoaAZoCWgPQwjL2xFOC74LwJSGlFKUaBVLMmgWR0CmBsAJswcpdX2UKGgGaAloD0MIGvm84qnnBsCUhpRSlGgVSzJoFkdApgaEJIDoyXV9lChoBmgJaA9DCF1qhH6mnhPAlIaUUpRoFUsyaBZHQKYIE6QvHtF1fZQoaAZoCWgPQwhr1a4JaU0JwJSGlFKUaBVLMmgWR0CmB9e1KGtZdX2UKGgGaAloD0MIPUZ55uXQCMCUhpRSlGgVSzJoFkdApgeaFbmlqXV9lChoBmgJaA9DCAGG5c+3pQrAlIaUUpRoFUsyaBZHQKYHXixVyWB1fZQoaAZoCWgPQwhyo8haQ2kPwJSGlFKUaBVLMmgWR0CmCO/N7jT8dX2UKGgGaAloD0MIcM0d/S+XBMCUhpRSlGgVSzJoFkdApgi0Aiml7HV9lChoBmgJaA9DCEYL0Laa1RbAlIaUUpRoFUsyaBZHQKYIdmYBvJl1fZQoaAZoCWgPQwhYkGYsmp4YwJSGlFKUaBVLMmgWR0CmCDptJnQIdX2UKGgGaAloD0MIWDfeHRkLEcCUhpRSlGgVSzJoFkdApgnRkXk5qHV9lChoBmgJaA9DCFnDRe7pahLAlIaUUpRoFUsyaBZHQKYJlcX3xnZ1fZQoaAZoCWgPQwjjUpW2uIYgwJSGlFKUaBVLMmgWR0CmCVgkka/AdX2UKGgGaAloD0MI7x8L0SEwDsCUhpRSlGgVSzJoFkdApgkcRaouPHV9lChoBmgJaA9DCKn4vyMqNAzAlIaUUpRoFUsyaBZHQKYKs6shgVp1fZQoaAZoCWgPQwh47dKGw9IWwJSGlFKUaBVLMmgWR0CmCnfMnqmkdX2UKGgGaAloD0MIdES+S6lLBsCUhpRSlGgVSzJoFkdApgo6Kcd5p3V9lChoBmgJaA9DCP1s5LopZQvAlIaUUpRoFUsyaBZHQKYJ/jG1hLJ1fZQoaAZoCWgPQwglH7sLlIQRwJSGlFKUaBVLMmgWR0CmC5fqgRK6dX2UKGgGaAloD0MIQC/cuTDSBcCUhpRSlGgVSzJoFkdApgtcCvHLinV9lChoBmgJaA9DCFeYvtcQ3AvAlIaUUpRoFUsyaBZHQKYLHm/336B1fZQoaAZoCWgPQwj3d7ZHb1gNwJSGlFKUaBVLMmgWR0CmCuKcEvCedX2UKGgGaAloD0MIPKBsyhU+CsCUhpRSlGgVSzJoFkdApgxvEwWWQnV9lChoBmgJaA9DCO6XT1YMZxbAlIaUUpRoFUsyaBZHQKYMMx9G7SR1fZQoaAZoCWgPQwg//tKiPikFwJSGlFKUaBVLMmgWR0CmC/WIfr8jdX2UKGgGaAloD0MIzJiCNc4GCsCUhpRSlGgVSzJoFkdApgu5gPVd5nV9lChoBmgJaA9DCJSgv9AjBgnAlIaUUpRoFUsyaBZHQKYNS3y7PIJ1fZQoaAZoCWgPQwjiVkEMdI0XwJSGlFKUaBVLMmgWR0CmDQ+HrQgLdX2UKGgGaAloD0MIq1yo/GvZEcCUhpRSlGgVSzJoFkdApgzR15jYqXV9lChoBmgJaA9DCNRgGoaPWBnAlIaUUpRoFUsyaBZHQKYMldk8Rth1fZQoaAZoCWgPQwhfKGA7GPERwJSGlFKUaBVLMmgWR0CmDii+tbLVdX2UKGgGaAloD0MIvCAiNe0CBMCUhpRSlGgVSzJoFkdApg3s/GEPD3V9lChoBmgJaA9DCFhUxOkkGwzAlIaUUpRoFUsyaBZHQKYNr1TR6Wx1fZQoaAZoCWgPQwhMGqN1VDUCwJSGlFKUaBVLMmgWR0CmDXNVBD5TdX2UKGgGaAloD0MIKXrgY7CSEcCUhpRSlGgVSzJoFkdApg8HQKKHf3V9lChoBmgJaA9DCET9LmzNNg3AlIaUUpRoFUsyaBZHQKYOy4YrJ8x1fZQoaAZoCWgPQwhTexFtx1QRwJSGlFKUaBVLMmgWR0CmDo3sPatcdX2UKGgGaAloD0MI5gMCnUn7CMCUhpRSlGgVSzJoFkdApg5R79hqkHV9lChoBmgJaA9DCFyrPeyF8hrAlIaUUpRoFUsyaBZHQKYP6q7yxzJ1fZQoaAZoCWgPQwiRuTKoNpgJwJSGlFKUaBVLMmgWR0CmD67lA/s3dX2UKGgGaAloD0MIPV+zXDaaBcCUhpRSlGgVSzJoFkdApg9xM36yjnV9lChoBmgJaA9DCIm3zr9dxhDAlIaUUpRoFUsyaBZHQKYPNUONHYp1fZQoaAZoCWgPQwiRfvs6cO4LwJSGlFKUaBVLMmgWR0CmEMS3Td+HdX2UKGgGaAloD0MIPSzUmuYtGMCUhpRSlGgVSzJoFkdAphCI3eenRHV9lChoBmgJaA9DCDDa44V0uAbAlIaUUpRoFUsyaBZHQKYQS0G/vfF1fZQoaAZoCWgPQwjuQ95y9eMIwJSGlFKUaBVLMmgWR0CmEA8v/R3NdX2UKGgGaAloD0MIQFBu2/fIFMCUhpRSlGgVSzJoFkdAphGfbj94vHV9lChoBmgJaA9DCLYvoBfufAvAlIaUUpRoFUsyaBZHQKYRY5uqFRJ1fZQoaAZoCWgPQwhEM0+uKZAUwJSGlFKUaBVLMmgWR0CmESX3YcvNdX2UKGgGaAloD0MIijve5Lc4EMCUhpRSlGgVSzJoFkdAphDqDK5kLHV9lChoBmgJaA9DCBaFXRQ9wBDAlIaUUpRoFUsyaBZHQKYSgCIUJv51fZQoaAZoCWgPQwito6oJos4FwJSGlFKUaBVLMmgWR0CmEkQ97ngYdX2UKGgGaAloD0MIK76h8NkaD8CUhpRSlGgVSzJoFkdAphIGnO0LMXV9lChoBmgJaA9DCOenOA682gPAlIaUUpRoFUsyaBZHQKYRyrWAf+11fZQoaAZoCWgPQwiq8dJNYlAHwJSGlFKUaBVLMmgWR0CmE2PsiSq3dX2UKGgGaAloD0MIRWgEG9fPE8CUhpRSlGgVSzJoFkdAphMoCnxaxHV9lChoBmgJaA9DCG03wTdNDxHAlIaUUpRoFUsyaBZHQKYS6nTiKix1fZQoaAZoCWgPQwgAGxAhrowTwJSGlFKUaBVLMmgWR0CmEq57gKnfdX2UKGgGaAloD0MIc56xL9n4E8CUhpRSlGgVSzJoFkdAphRFSVGCqnV9lChoBmgJaA9DCA/SU+QQkQrAlIaUUpRoFUsyaBZHQKYUCVLSNOx1fZQoaAZoCWgPQwjb2y3JASsRwJSGlFKUaBVLMmgWR0CmE8utOmBOdX2UKGgGaAloD0MIvRqgNNToDsCUhpRSlGgVSzJoFkdAphOPsmfGuXV9lChoBmgJaA9DCF35LM+DOxnAlIaUUpRoFUsyaBZHQKYVI8h9srN1fZQoaAZoCWgPQwjLTGn9LUENwJSGlFKUaBVLMmgWR0CmFOfe+Eh8dX2UKGgGaAloD0MIcsRafAoAE8CUhpRSlGgVSzJoFkdAphSqWom5UnV9lChoBmgJaA9DCNAn8iTp+gfAlIaUUpRoFUsyaBZHQKYUbnU2DQJ1fZQoaAZoCWgPQwh8LH3ogvoOwJSGlFKUaBVLMmgWR0CmFmv5pJwsdX2UKGgGaAloD0MIq7GEtTH2FcCUhpRSlGgVSzJoFkdAphYws/Y8MnV9lChoBmgJaA9DCH9N1qiHyATAlIaUUpRoFUsyaBZHQKYV87TUiIN1fZQoaAZoCWgPQwiZf/RNmnYdwJSGlFKUaBVLMmgWR0CmFbgzP8htdX2UKGgGaAloD0MITb1uERirBcCUhpRSlGgVSzJoFkdAphfHPE87p3V9lChoBmgJaA9DCKrVV1cFSgrAlIaUUpRoFUsyaBZHQKYXi/336AR1fZQoaAZoCWgPQwgqHEEqxY4GwJSGlFKUaBVLMmgWR0CmF075VOsUdX2UKGgGaAloD0MI63Qg66nVCcCUhpRSlGgVSzJoFkdAphcTdi2Dx3V9lChoBmgJaA9DCBu62R8oBxPAlIaUUpRoFUsyaBZHQKYZIMYuTRp1fZQoaAZoCWgPQwhv05/9SLEGwJSGlFKUaBVLMmgWR0CmGOW6shgWdX2UKGgGaAloD0MIyk4/qIsUGsCUhpRSlGgVSzJoFkdAphior+YMOXV9lChoBmgJaA9DCJEr9SwIZR3AlIaUUpRoFUsyaBZHQKYYbTa0x/N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (834 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -4.087775980634615, "std_reward": 1.6167192049324186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T18:57:00.034331"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5c9a18b471f1bf1b93de6eab8b7da0865baeb013f44cf5fa542e8032ea14ce4
|
3 |
+
size 2381
|