File size: 1,157 Bytes
7000e9e 0199f68 7000e9e 872edce f15e6a1 b042b12 f15e6a1 872edce f15e6a1 872edce 0252cd0 f15e6a1 872edce f15e6a1 0252cd0 c403e62 0252cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
---
license: mit
datasets:
- rmit-denominator/BloomSage-Feature_extractor
language:
- en
metrics:
- accuracy
library_name: keras
pipeline_tag: image-classification
tags:
- biology
---
## BloomSage Flower Classification and Recommendation Models
- The repository contains 3 flower classification model and 1 feature extractor model for flower recommendation.
- For more specific instruction, please visit https://github.com/rmit-denominator/bloomsage-ml
### Applications
2. Flower classification
3. Recommender system
### Selected models
- For classification, we use the basic structure of Artificial Neutral Network (ANN) and Convolutional Neutral Network (CNN).
- For the feature extractor, we constructed a Convolutional Neural Network (CNN) to extract feature vectors from user preferences image
- Apply a K-Means unsupervised machine learning model to cluster the reference image's feature vector with those of the images in our database.
### Limitations
- Since our target customers are small flower shops, we just use a sample of 8 flower species with 16362 images.
### How to use :
- Dependencies :
- ```huggingface-hub```,
- ```gitlfs```
|