Image Classification
Keras
English
biology
File size: 1,157 Bytes
7000e9e
 
 
 
 
0199f68
7000e9e
 
 
 
 
 
 
 
872edce
 
 
 
 
f15e6a1
 
b042b12
f15e6a1
872edce
f15e6a1
872edce
0252cd0
f15e6a1
 
872edce
f15e6a1
0252cd0
c403e62
 
0252cd0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: mit
datasets:
- rmit-denominator/BloomSage-Feature_extractor
language:
- en
metrics:
- accuracy
library_name: keras
pipeline_tag: image-classification
tags:
- biology
---

## BloomSage Flower Classification and Recommendation Models
- The repository contains 3 flower classification model and 1 feature extractor model for flower recommendation. 
- For more specific instruction, please visit https://github.com/rmit-denominator/bloomsage-ml

### Applications

2. Flower classification 
3. Recommender system

### Selected models

- For classification, we use the basic structure of Artificial Neutral Network (ANN) and Convolutional Neutral Network (CNN). 
- For the feature extractor, we constructed a Convolutional Neural Network (CNN) to extract feature vectors from user preferences image
- Apply a K-Means unsupervised machine learning model to cluster the reference image's feature vector with those of the images in our database.

### Limitations

- Since our target customers are small flower shops, we just use a sample of 8 flower species with 16362 images.

### How to use :
- Dependencies :
- ```huggingface-hub```,
- ```gitlfs```