set up ppo baseline
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +7 -7
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 263.47 +/- 44.34
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651934320.3202248, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3iqD1ce2a6O5e3u4wCTzhQ6HG6ekxjOgAAgD8AAIA/mllLvArHQ7maBEK7m0Q/M0b2BTrSzhuzAACAPwAAgD+aPdw7SN+tuupOT7tpJmy2zumwuSiIbToAAIA/AACAPzP6uLyPThm6RnPTOwp1vja7yKS6TDrANQAAgD8AAIA/TbUZvRbMtj9Txc++4Gi1vFnQkjx45Vi8AAAAAAAAAACazbe74daDun4ia7wOv1u1mIMDu3a8zTQAAIA/AACAP62iKb42OWO8Nr89vXEbsrsGz9M9FmeQPAAAgD8AAIA/pmkEPvYMNTtjN5K9aazou3zjyzxq5c+8AACAPwAAgD9NtLa99jgrulLQSTvNK440GHGFu+vJaLoAAIA/AACAP+AqNz4p6iy8LiPsuEumvjZ4EJC9aCsOOAAAgD8AAIA/kzETPvYoZzl2GNa7IoGSuP6WPzy8yaO5AACAPwAAgD8NfKa9HuiTPlsK6z2PWAu+wfJxOi5mwzwAAAAAAAAAAEC+cz4FNB4+mliLPava/L1YU7a9ECP5PQAAAAAAAAAAy3QCP4zeA764Rsi7gkYjOeLHHr22d7e0AAAAAAAAgD9w7ZU+l5kzPzpKTD5nWbK+8eNVPrGcC74AAAAAAAAAAACkwjspCHK6gOCAu91KqjikPT86aeCEOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj1VKz/TaMsCUhpRSlIwBbJRLs4wBdJRHQIBE+OlwcYJ1fZQoaAZoCWgPQwgLfbCMDS1bQJSGlFKUaBVN6ANoFkdAgEbbAtWdVnV9lChoBmgJaA9DCPm+uFQlLmFAlIaUUpRoFU3oA2gWR0CAjPBrvb48dX2UKGgGaAloD0MIdQDEXb1iW0CUhpRSlGgVTegDaBZHQICOuZ9d/rl1fZQoaAZoCWgPQwinPpC8c2gxwJSGlFKUaBVL/2gWR0CApaeEIw/QdX2UKGgGaAloD0MIks8rnnqVXECUhpRSlGgVTegDaBZHQIC7cQZn+Q51fZQoaAZoCWgPQwiF7/0N2hpYwJSGlFKUaBVNngFoFkdAgNMQ2ETQFHV9lChoBmgJaA9DCI2ZRL1gpmBAlIaUUpRoFU3oA2gWR0CA2JWcSXdCdX2UKGgGaAloD0MIFclXAiknTUCUhpRSlGgVTegDaBZHQIDYzCLuQZJ1fZQoaAZoCWgPQwiZgcr499pbQJSGlFKUaBVN6ANoFkdAgNnjej2zwHV9lChoBmgJaA9DCG1X6INlmD9AlIaUUpRoFU3oA2gWR0CA4LksjFAFdX2UKGgGaAloD0MIjx1U4jqYYUCUhpRSlGgVTegDaBZHQIDlMcp9ZzR1fZQoaAZoCWgPQwgkYkok0e9bQJSGlFKUaBVN6ANoFkdAgOiWys0YTHV9lChoBmgJaA9DCJkSSfQyr1JAlIaUUpRoFU3oA2gWR0CA7Xfb9If9dX2UKGgGaAloD0MIKo2Y2ed2VECUhpRSlGgVTegDaBZHQID0Hx8UmD11fZQoaAZoCWgPQwi6+UZ0z3VbQJSGlFKUaBVN6ANoFkdAgQI+ZgG8mXV9lChoBmgJaA9DCO2DLAsmm1VAlIaUUpRoFU3oA2gWR0CBCg1vVEuydX2UKGgGaAloD0MIdc3km21TXkCUhpRSlGgVTegDaBZHQIEO0iW3Sa51fZQoaAZoCWgPQwiB6EmZ1GhYQJSGlFKUaBVN6ANoFkdAgRiAeJYT03V9lChoBmgJaA9DCIo73uS3FVFAlIaUUpRoFU3oA2gWR0CBYpzSThYOdX2UKGgGaAloD0MIRUseT8uvLcCUhpRSlGgVS7RoFkdAgWUo8ZDRdHV9lChoBmgJaA9DCCRDjq1n11lAlIaUUpRoFU3oA2gWR0CBgJF9a2WqdX2UKGgGaAloD0MI9YQlHlDmRMCUhpRSlGgVS+loFkdAgZBXZPEbYXV9lChoBmgJaA9DCAys4/ihDVlAlIaUUpRoFU3oA2gWR0CBmGbAk9lmdX2UKGgGaAloD0MICCC1iRPUYECUhpRSlGgVTegDaBZHQIGzG1KGtZF1fZQoaAZoCWgPQwgxYMlVLHxdQJSGlFKUaBVN6ANoFkdAgblzmOlwcnV9lChoBmgJaA9DCHicoiO5s19AlIaUUpRoFU3oA2gWR0CBubXFLnLadX2UKGgGaAloD0MItp+M8WFGN0CUhpRSlGgVTegDaBZHQIG6+ZssQNF1fZQoaAZoCWgPQwhrmQzH87EiQJSGlFKUaBVL4GgWR0CBvAO5rgwXdX2UKGgGaAloD0MIh6QWSiYtV0CUhpRSlGgVTegDaBZHQIHC61Z1V5t1fZQoaAZoCWgPQwhruwm+acoxQJSGlFKUaBVN6ANoFkdAgcexgy/KyXV9lChoBmgJaA9DCClbJO1GUVRAlIaUUpRoFU3oA2gWR0CBy0o60Y0mdX2UKGgGaAloD0MIVaUtrvGNXECUhpRSlGgVTegDaBZHQIHQHTCtRvZ1fZQoaAZoCWgPQwg3T3XIzTAFQJSGlFKUaBVLsWgWR0CB1WUVSGahdX2UKGgGaAloD0MIexAC8qU2YkCUhpRSlGgVTegDaBZHQIHWUZ3s5XF1fZQoaAZoCWgPQwheZtgo6/8uQJSGlFKUaBVL3mgWR0CB4HSH/LkkdX2UKGgGaAloD0MIUiY1tIGgYUCUhpRSlGgVTegDaBZHQIHjUAT7EYR1fZQoaAZoCWgPQwgXSbvRx8VcQJSGlFKUaBVN6ANoFkdAgep/SpiqhnV9lChoBmgJaA9DCHf3AN2XiyVAlIaUUpRoFUu7aBZHQIHvvOW0JF91fZQoaAZoCWgPQwiOdtzwuxE8QJSGlFKUaBVNMgFoFkdAgfSA08/2TXV9lChoBmgJaA9DCLDkKha/6FFAlIaUUpRoFU3oA2gWR0CB97ubZvkzdX2UKGgGaAloD0MIG2MnvATQWUCUhpRSlGgVTegDaBZHQII/yQYDT0B1fZQoaAZoCWgPQwgNx/MZUE8mwJSGlFKUaBVNNAFoFkdAgkmrXtjTa3V9lChoBmgJaA9DCIP3VblQkSLAlIaUUpRoFUv1aBZHQIJWrBKtga51fZQoaAZoCWgPQwhrmnecorVcQJSGlFKUaBVN6ANoFkdAglp2Q4jrzHV9lChoBmgJaA9DCMKmzqNicGFAlIaUUpRoFU3oA2gWR0CCb1qUNayKdX2UKGgGaAloD0MI+S6lLhnXOkCUhpRSlGgVS/loFkdAgoAWxhUip3V9lChoBmgJaA9DCDnRrkLKS11AlIaUUpRoFU3oA2gWR0CChjdzGPxQdX2UKGgGaAloD0MIGFqdnCFSYECUhpRSlGgVTegDaBZHQIKLe45Lh751fZQoaAZoCWgPQwjk84qnngpkQJSGlFKUaBVN6ANoFkdAgoupr+Hae3V9lChoBmgJaA9DCIf9nlinGWJAlIaUUpRoFU3oA2gWR0CCjLrYXfqHdX2UKGgGaAloD0MIOwDirl6xOUCUhpRSlGgVS/VoFkdAgpZ9aUzKtHV9lChoBmgJaA9DCHglyXP9mmBAlIaUUpRoFU3oA2gWR0CCl92TxG2DdX2UKGgGaAloD0MIpcACmDKIYECUhpRSlGgVTegDaBZHQIKgoIfKZD11fZQoaAZoCWgPQwgGvMywUQNZQJSGlFKUaBVN6ANoFkdAgqaDJ+2E03V9lChoBmgJaA9DCLIrLSP1jiZAlIaUUpRoFUvHaBZHQIKoIYP5HmR1fZQoaAZoCWgPQwiLbyh8tm1gQJSGlFKUaBVN6ANoFkdAgrOQ7T2FnXV9lChoBmgJaA9DCJiIt84/c2BAlIaUUpRoFU3oA2gWR0CCvkNSZSeidX2UKGgGaAloD0MIvFruzAShU0CUhpRSlGgVS7VoFkdAgsOTSCvovHV9lChoBmgJaA9DCOusFthjNmBAlIaUUpRoFU3oA2gWR0CCxDVXmvGIdX2UKGgGaAloD0MIrADfbd4pXkCUhpRSlGgVTegDaBZHQILI6M98qnZ1fZQoaAZoCWgPQwiESfHxCTkZQJSGlFKUaBVL5mgWR0CCyXiMo+fRdX2UKGgGaAloD0MINszQeCIUNUCUhpRSlGgVS6toFkdAgtcwqy4WlHV9lChoBmgJaA9DCCC4yhMIwyBAlIaUUpRoFU3oA2gWR0CC2qrEtNBXdX2UKGgGaAloD0MIgo/BilNUXkCUhpRSlGgVTegDaBZHQIMbnXmNiph1fZQoaAZoCWgPQwh6UiY1tD1DQJSGlFKUaBVL3GgWR0CDIFT72tdSdX2UKGgGaAloD0MI8BMH0O+mbECUhpRSlGgVTeoBaBZHQIMgfXd0q6R1fZQoaAZoCWgPQwir0EAsm9lYQJSGlFKUaBVN6ANoFkdAgyq0D+zdDnV9lChoBmgJaA9DCEc4LXjRtz1AlIaUUpRoFU0VAWgWR0CDTWZqmCRPdX2UKGgGaAloD0MIyxKdZRbcYECUhpRSlGgVTegDaBZHQINRGqm0mdB1fZQoaAZoCWgPQwjMQdDRqvpgQJSGlFKUaBVN6ANoFkdAg1eMFEAo5XV9lChoBmgJaA9DCEn2CDVD3mBAlIaUUpRoFU3oA2gWR0CDXRa0QbuMdX2UKGgGaAloD0MICyb+KOqkXkCUhpRSlGgVTegDaBZHQINedDSgGr11fZQoaAZoCWgPQwjeBN80fYpdQJSGlFKUaBVN6ANoFkdAg2lYe9zwMHV9lChoBmgJaA9DCPHZOjhYbWBAlIaUUpRoFU3oA2gWR0CDasHPeHi4dX2UKGgGaAloD0MIDmjpCrY4VkCUhpRSlGgVTegDaBZHQIOKQ9aEBbR1fZQoaAZoCWgPQwitpBXfUDlXQJSGlFKUaBVN6ANoFkdAg50S0rsjV3V9lChoBmgJaA9DCDJzgctjCGFAlIaUUpRoFU3oA2gWR0CDnctnwob5dX2UKGgGaAloD0MI4IEBhA/PWUCUhpRSlGgVTegDaBZHQIOjrPBzmwJ1fZQoaAZoCWgPQwgF+G7zxgJmQJSGlFKUaBVN6ANoFkdAg7KtLteD4HV9lChoBmgJaA9DCMFSXcBLOWBAlIaUUpRoFU3oA2gWR0CDtly6MBIXdX2UKGgGaAloD0MI7GexFMmlXkCUhpRSlGgVTegDaBZHQIP31lkH2RJ1fZQoaAZoCWgPQwgAjj17Lp1aQJSGlFKUaBVN6ANoFkdAg/xf/vOQhnV9lChoBmgJaA9DCEuRfCWQEglAlIaUUpRoFU0gAWgWR0CEATb6guh9dX2UKGgGaAloD0MIlGx1OSUEXECUhpRSlGgVTegDaBZHQIQGG9eyAx11fZQoaAZoCWgPQwifrBiuDqA7wJSGlFKUaBVL2mgWR0CEChIOpbUxdX2UKGgGaAloD0MIPBVwz3NZYUCUhpRSlGgVTegDaBZHQIQlFZid8Rd1fZQoaAZoCWgPQwgw8rImFpdjQJSGlFKUaBVN6ANoFkdAhCgfvF3pwHV9lChoBmgJaA9DCJbnwd3Z32JAlIaUUpRoFU3oA2gWR0CELVbsWweOdX2UKGgGaAloD0MIv/OLEvQ5YkCUhpRSlGgVTegDaBZHQIQyGYtxuKp1fZQoaAZoCWgPQwiwkSQIV4ddQJSGlFKUaBVN6ANoFkdAhDM8jAzpHXV9lChoBmgJaA9DCMwpATGJYmBAlIaUUpRoFU3oA2gWR0CEPK44Ia99dX2UKGgGaAloD0MI6e3PRcNaYECUhpRSlGgVTegDaBZHQIQ+BazNUwV1fZQoaAZoCWgPQwiXi/hOTO9pQJSGlFKUaBVN7AFoFkdAhE5PfsNUfnV9lChoBmgJaA9DCJIGt7WFSUtAlIaUUpRoFUvvaBZHQIRUa4YrJ8x1fZQoaAZoCWgPQwh5IojzcOplQJSGlFKUaBVN6ANoFkdAhFqLrgOz6nV9lChoBmgJaA9DCML3/gZtsmFAlIaUUpRoFU3oA2gWR0CEa0wX668QdX2UKGgGaAloD0MIbf/KSpPQU0CUhpRSlGgVTegDaBZHQIRxro4dZJV1fZQoaAZoCWgPQwjQudv10u9aQJSGlFKUaBVN6ANoFkdAhIVq4x1xKnV9lChoBmgJaA9DCJIIjWDjkFlAlIaUUpRoFU3oA2gWR0CEj8EQGwA3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651936026.8592339, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIOfZ76myhs/Wh2QPqIG5L6qm7u9IdYSPgAAAAAAAAAAFkiQPn7ctz7jHQW/47KovmAQdTxwsJW+AAAAAAAAAADNclE9XCNnup/DMbvVHN61AJtYupaATDUAAAAAAAAAAJr6sT1sFe88W8KHvsmRgr7mIsG9ClPyOwAAAAAAAAAAM5nEPbjmp7k2St86706VNeXOzzum+wa6AAAAAAAAgD+afUm8XONMugIc4bhkNZWzdUb4uWUsBDgAAIA/AACAP/OtmL3DITW6sD+LOKH59zWCV0m7jQamtwAAAAAAAIA/mu1zvXH7Yrto3Fc8mcySPFbkobzLmns9AACAPwAAgD9NMUm9KvK+P9Ntrr73fO49b2OnvFcTMr4AAAAAAAAAAAA2LLyPeSe8FK43vBlmQzzRjKU9W6MjvQAAgD8AAIA/QEnWPUiVhboITOU6ywCRNaq8FDs0CQW6AAAAAAAAgD9agp+9SP7ePuPxqD0qtrK+Xgszvd6NV70AAAAAAAAAACDlIL60BoY/kwqqvg259b5b8Xy+Xq9EvQAAAAAAAAAAgNKwvYVPMT6CBxA+nJm1vmG1jzyidAs9AAAAAAAAAACAgyo9Q6EIvNJ8ITu3ZhQ8H5ttvaiuBj0AAIA/AACAPzMNnzxIvSU/GAHBOxpM+r43tBI9gQGcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVFc+y7NBcUCUhpRSlIwBbJRNAgGMAXSUR0CudHG7BfrsdX2UKGgGaAloD0MIKH6MuSs7cUCUhpRSlGgVS+BoFkdArnTNh3JPqXV9lChoBmgJaA9DCLdELjgDbXJAlIaUUpRoFUv1aBZHQK50y41gpjN1fZQoaAZoCWgPQwgvNUI/k/pwQJSGlFKUaBVL52gWR0CudOQjMV1wdX2UKGgGaAloD0MIFtwPeGC0UUCUhpRSlGgVS5toFkdArnUJMtbs4XV9lChoBmgJaA9DCHzxRXu87DRAlIaUUpRoFUuIaBZHQK52WqR2bG51fZQoaAZoCWgPQwjlKavp+lRxQJSGlFKUaBVL6GgWR0CudwAMtseodX2UKGgGaAloD0MI0Qg2rr/PcUCUhpRSlGgVS9poFkdArncaY3Ns33V9lChoBmgJaA9DCOoFn+ZkznFAlIaUUpRoFU0WAWgWR0CudzN+9alldX2UKGgGaAloD0MI4/viUpUxckCUhpRSlGgVS+9oFkdArnc3lEJBxHV9lChoBmgJaA9DCMr7OJpjiHBAlIaUUpRoFUvfaBZHQK54djU/fO51fZQoaAZoCWgPQwgpPGh2XeNyQJSGlFKUaBVNAQFoFkdArniBKWcBl3V9lChoBmgJaA9DCC9NEeC0dXFAlIaUUpRoFU0dAWgWR0CueQTLW7OFdX2UKGgGaAloD0MICAJk6JhpcUCUhpRSlGgVS9xoFkdArnljZBcAznV9lChoBmgJaA9DCAjL2NBNjHFAlIaUUpRoFUvqaBZHQK55Zf+CK791fZQoaAZoCWgPQwhJZB9kGZdxQJSGlFKUaBVL/WgWR0CueW1BdD6WdX2UKGgGaAloD0MILZeNzjmVcUCUhpRSlGgVS+xoFkdArnly9XcQAnV9lChoBmgJaA9DCHJRLSKK3l5AlIaUUpRoFU3oA2gWR0CueiCYb83udX2UKGgGaAloD0MI6wJeZth9b0CUhpRSlGgVTQsBaBZHQK56Jet0V8F1fZQoaAZoCWgPQwj/rs+cNQtyQJSGlFKUaBVLumgWR0CueuG6GxlhdX2UKGgGaAloD0MIym5m9KMsZkCUhpRSlGgVTegDaBZHQK56/Kifxtp1fZQoaAZoCWgPQwhRE30+SmltQJSGlFKUaBVL7mgWR0CuexZOrQw9dX2UKGgGaAloD0MIti3KbFBRcUCUhpRSlGgVS81oFkdArnskuez2OHV9lChoBmgJaA9DCHE486t5D3JAlIaUUpRoFUvbaBZHQK57SLG7z091fZQoaAZoCWgPQwiA9E2ahrdxQJSGlFKUaBVL1mgWR0Cue1s36yjYdX2UKGgGaAloD0MI/rrTnaf4Y0CUhpRSlGgVTegDaBZHQK57l3pwCKd1fZQoaAZoCWgPQwhr8pTVNDhxQJSGlFKUaBVL2GgWR0CufFGlyimEdX2UKGgGaAloD0MIBWucTUeTbkCUhpRSlGgVS/RoFkdArny5ON5t33V9lChoBmgJaA9DCFzoSgSqq3JAlIaUUpRoFUvPaBZHQK582WRigCh1fZQoaAZoCWgPQwje5SK+U6ZxQJSGlFKUaBVL0WgWR0CufOKu8scydX2UKGgGaAloD0MIJ92WyAXFckCUhpRSlGgVS9loFkdArn0QP07KaHV9lChoBmgJaA9DCMzR4/e2p21AlIaUUpRoFUv4aBZHQK59Nqt5le51fZQoaAZoCWgPQwiE9X8OMzxyQJSGlFKUaBVLyGgWR0CufVgFPi1idX2UKGgGaAloD0MI3xtDAHABb0CUhpRSlGgVS9FoFkdArowvcFhXsHV9lChoBmgJaA9DCKdB0TwAgG5AlIaUUpRoFUvbaBZHQK6Men9ehPF1fZQoaAZoCWgPQwgeNSbEnGNxQJSGlFKUaBVL3WgWR0CujJRHPNVzdX2UKGgGaAloD0MI46jcRG1KcUCUhpRSlGgVTRsBaBZHQK6MrqLS/j91fZQoaAZoCWgPQwiOdtzwe6hyQJSGlFKUaBVL1WgWR0CujLE56t1ZdX2UKGgGaAloD0MIayi1F9GQUkCUhpRSlGgVS5VoFkdAroy2zyBkJHV9lChoBmgJaA9DCC6thsQ99XJAlIaUUpRoFUv3aBZHQK6Mx5vcafl1fZQoaAZoCWgPQwhrgT0m0nVyQJSGlFKUaBVL4mgWR0CujSCXY150dX2UKGgGaAloD0MIiUShZd1mcECUhpRSlGgVTWsBaBZHQK6NX4/u9e11fZQoaAZoCWgPQwihgsML4gpzQJSGlFKUaBVLvmgWR0Cujb3lr/KhdX2UKGgGaAloD0MIRpbMsXwockCUhpRSlGgVS8loFkdAro5l5OafBnV9lChoBmgJaA9DCO7qVWS083JAlIaUUpRoFUvhaBZHQK6OdBFd9lV1fZQoaAZoCWgPQwjtD5Tb9kZzQJSGlFKUaBVL3WgWR0Cujt/tY0VKdX2UKGgGaAloD0MIpnwIqgZAcECUhpRSlGgVS/doFkdAro8Ag1WKdnV9lChoBmgJaA9DCC5W1GDad3JAlIaUUpRoFU0MAWgWR0CujyL9uP3jdX2UKGgGaAloD0MI56bNOI0/dECUhpRSlGgVS9loFkdArpAhGYrrgXV9lChoBmgJaA9DCKOs30zMCW9AlIaUUpRoFUvaaBZHQK6QQsasIVx1fZQoaAZoCWgPQwinQdE8wNJwQJSGlFKUaBVL42gWR0CukHE9lmOEdX2UKGgGaAloD0MIUWhZ9w/DcUCUhpRSlGgVS9FoFkdArpCcpTdcjnV9lChoBmgJaA9DCBea6zQSWnFAlIaUUpRoFUv9aBZHQK6QrjPv8ZV1fZQoaAZoCWgPQwj922W/7iJ0QJSGlFKUaBVNDwFoFkdArpC5xT850nV9lChoBmgJaA9DCKTH7216K3NAlIaUUpRoFU0EAWgWR0CukPid8RcvdX2UKGgGaAloD0MIvCAiNW3zbUCUhpRSlGgVTQIBaBZHQK6RBuO0b991fZQoaAZoCWgPQwjFH0Wd+TtwQJSGlFKUaBVL52gWR0CukTBP9DQadX2UKGgGaAloD0MIZCR7hJpFT0CUhpRSlGgVS4poFkdArpE3rGBFu3V9lChoBmgJaA9DCH6NJEE4t25AlIaUUpRoFUvzaBZHQK6RwEJ0GNd1fZQoaAZoCWgPQwjVJeMYScBxQJSGlFKUaBVL42gWR0CukjSH/LkkdX2UKGgGaAloD0MI2h694X6ncECUhpRSlGgVS+loFkdArpJAVwgkknV9lChoBmgJaA9DCLYsX5chnXFAlIaUUpRoFUvVaBZHQK6SfgpBomJ1fZQoaAZoCWgPQwieCOI8nFQ5QJSGlFKUaBVLpGgWR0Cukr0pEx7BdX2UKGgGaAloD0MITtTS3IrzcUCUhpRSlGgVS9xoFkdArpK6B3A2ynV9lChoBmgJaA9DCIffTbfsm3JAlIaUUpRoFUvRaBZHQK6TuMAFPi11fZQoaAZoCWgPQwiwO915onNxQJSGlFKUaBVLzWgWR0CulC9B0ITodX2UKGgGaAloD0MIbqErESh1ckCUhpRSlGgVS8poFkdArpQzGaQV9HV9lChoBmgJaA9DCH4AUps4sXJAlIaUUpRoFUvgaBZHQK6UP0Lc9GJ1fZQoaAZoCWgPQwjSqwFKw8ZwQJSGlFKUaBVL5WgWR0CulEkoOQQudX2UKGgGaAloD0MIejnsvuMgcUCUhpRSlGgVTQoBaBZHQK6UfwXIlt11fZQoaAZoCWgPQwgYC0PkdBVzQJSGlFKUaBVL0WgWR0CulIWugYgrdX2UKGgGaAloD0MIgJpattbRcECUhpRSlGgVS+doFkdArpTPLxI8Q3V9lChoBmgJaA9DCKjEdYyr2HJAlIaUUpRoFU0lAWgWR0CulS7/GVAzdX2UKGgGaAloD0MIUrXdBN+GcUCUhpRSlGgVS+VoFkdArpVSCxu89XV9lChoBmgJaA9DCDnyQGSR1HFAlIaUUpRoFUvVaBZHQK6VkXHim2t1fZQoaAZoCWgPQwhN9WT+0WtzQJSGlFKUaBVL22gWR0CuleJKraM8dX2UKGgGaAloD0MIV5OnrOY+ckCUhpRSlGgVS/doFkdArpYE2eg+QnV9lChoBmgJaA9DCEpFY+2vTnFAlIaUUpRoFUvbaBZHQK6WIK9f1Hx1fZQoaAZoCWgPQwhVibK3lIZxQJSGlFKUaBVL52gWR0CulkpSR8txdX2UKGgGaAloD0MIwVjfwOTjbkCUhpRSlGgVS9JoFkdArpbmBSUC73V9lChoBmgJaA9DCCBB8WPMfnFAlIaUUpRoFUvQaBZHQK6XVZq20At1fZQoaAZoCWgPQwhP5h99U/hwQJSGlFKUaBVL2mgWR0Cul3RKg7HRdX2UKGgGaAloD0MIn3djQaFRcECUhpRSlGgVS+FoFkdArpeQB5ooNXV9lChoBmgJaA9DCEseT8uPG3FAlIaUUpRoFUvWaBZHQK6XrshPj4p1fZQoaAZoCWgPQwgPYJFfP8BwQJSGlFKUaBVL8GgWR0Cul93cxj8UdX2UKGgGaAloD0MIDTm2niFhU0CUhpRSlGgVS7doFkdArpgODQJHAnV9lChoBmgJaA9DCK0wfa8hB3JAlIaUUpRoFUvOaBZHQK6YozCUHIJ1fZQoaAZoCWgPQwiKVYMwd0pyQJSGlFKUaBVNAAFoFkdArpiin1nM+3V9lChoBmgJaA9DCB8wD5myPnFAlIaUUpRoFU3XA2gWR0CumLCQ9zOpdX2UKGgGaAloD0MIysABLV3CcECUhpRSlGgVTSUBaBZHQK6Y4eXiR4h1fZQoaAZoCWgPQwgQXOUJxOByQJSGlFKUaBVNEAFoFkdArpk6s8xKx3V9lChoBmgJaA9DCPomTYMigHFAlIaUUpRoFUvgaBZHQK6ZqVPepGZ1fZQoaAZoCWgPQwjWxtgJ7/JwQJSGlFKUaBVL92gWR0CumdmzjWCmdX2UKGgGaAloD0MINBDLZo4ocUCUhpRSlGgVS9BoFkdArpoUP4EfT3V9lChoBmgJaA9DCKck63C0vHFAlIaUUpRoFUvLaBZHQK6aeZiNKiB1fZQoaAZoCWgPQwi6TbhXZnZxQJSGlFKUaBVLzGgWR0CumpxOLzf8dX2UKGgGaAloD0MIDXBBtiw7OkCUhpRSlGgVS4poFkdArprdAHE/B3V9lChoBmgJaA9DCDKs4o3Mqm9AlIaUUpRoFUvjaBZHQK6bOEEkjX51fZQoaAZoCWgPQwjPukbLQbZxQJSGlFKUaBVL4WgWR0Cum6IEjgQ6dX2UKGgGaAloD0MIYYpyaXzQb0CUhpRSlGgVS9RoFkdArpwVQfp2U3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:981679412338f037d64d7a9b21d564ba6f6f7e0ef84b5f6ca10b3368011957ae
|
3 |
+
size 144010
|
ppo-LunarLander-v2/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651936026.8592339,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIOfZ76myhs/Wh2QPqIG5L6qm7u9IdYSPgAAAAAAAAAAFkiQPn7ctz7jHQW/47KovmAQdTxwsJW+AAAAAAAAAADNclE9XCNnup/DMbvVHN61AJtYupaATDUAAAAAAAAAAJr6sT1sFe88W8KHvsmRgr7mIsG9ClPyOwAAAAAAAAAAM5nEPbjmp7k2St86706VNeXOzzum+wa6AAAAAAAAgD+afUm8XONMugIc4bhkNZWzdUb4uWUsBDgAAIA/AACAP/OtmL3DITW6sD+LOKH59zWCV0m7jQamtwAAAAAAAIA/mu1zvXH7Yrto3Fc8mcySPFbkobzLmns9AACAPwAAgD9NMUm9KvK+P9Ntrr73fO49b2OnvFcTMr4AAAAAAAAAAAA2LLyPeSe8FK43vBlmQzzRjKU9W6MjvQAAgD8AAIA/QEnWPUiVhboITOU6ywCRNaq8FDs0CQW6AAAAAAAAgD9agp+9SP7ePuPxqD0qtrK+Xgszvd6NV70AAAAAAAAAACDlIL60BoY/kwqqvg259b5b8Xy+Xq9EvQAAAAAAAAAAgNKwvYVPMT6CBxA+nJm1vmG1jzyidAs9AAAAAAAAAACAgyo9Q6EIvNJ8ITu3ZhQ8H5ttvaiuBj0AAIA/AACAPzMNnzxIvSU/GAHBOxpM+r43tBI9gQGcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVFc+y7NBcUCUhpRSlIwBbJRNAgGMAXSUR0CudHG7BfrsdX2UKGgGaAloD0MIKH6MuSs7cUCUhpRSlGgVS+BoFkdArnTNh3JPqXV9lChoBmgJaA9DCLdELjgDbXJAlIaUUpRoFUv1aBZHQK50y41gpjN1fZQoaAZoCWgPQwgvNUI/k/pwQJSGlFKUaBVL52gWR0CudOQjMV1wdX2UKGgGaAloD0MIFtwPeGC0UUCUhpRSlGgVS5toFkdArnUJMtbs4XV9lChoBmgJaA9DCHzxRXu87DRAlIaUUpRoFUuIaBZHQK52WqR2bG51fZQoaAZoCWgPQwjlKavp+lRxQJSGlFKUaBVL6GgWR0CudwAMtseodX2UKGgGaAloD0MI0Qg2rr/PcUCUhpRSlGgVS9poFkdArncaY3Ns33V9lChoBmgJaA9DCOoFn+ZkznFAlIaUUpRoFU0WAWgWR0CudzN+9alldX2UKGgGaAloD0MI4/viUpUxckCUhpRSlGgVS+9oFkdArnc3lEJBxHV9lChoBmgJaA9DCMr7OJpjiHBAlIaUUpRoFUvfaBZHQK54djU/fO51fZQoaAZoCWgPQwgpPGh2XeNyQJSGlFKUaBVNAQFoFkdArniBKWcBl3V9lChoBmgJaA9DCC9NEeC0dXFAlIaUUpRoFU0dAWgWR0CueQTLW7OFdX2UKGgGaAloD0MICAJk6JhpcUCUhpRSlGgVS9xoFkdArnljZBcAznV9lChoBmgJaA9DCAjL2NBNjHFAlIaUUpRoFUvqaBZHQK55Zf+CK791fZQoaAZoCWgPQwhJZB9kGZdxQJSGlFKUaBVL/WgWR0CueW1BdD6WdX2UKGgGaAloD0MILZeNzjmVcUCUhpRSlGgVS+xoFkdArnly9XcQAnV9lChoBmgJaA9DCHJRLSKK3l5AlIaUUpRoFU3oA2gWR0CueiCYb83udX2UKGgGaAloD0MI6wJeZth9b0CUhpRSlGgVTQsBaBZHQK56Jet0V8F1fZQoaAZoCWgPQwj/rs+cNQtyQJSGlFKUaBVLumgWR0CueuG6GxlhdX2UKGgGaAloD0MIym5m9KMsZkCUhpRSlGgVTegDaBZHQK56/Kifxtp1fZQoaAZoCWgPQwhRE30+SmltQJSGlFKUaBVL7mgWR0CuexZOrQw9dX2UKGgGaAloD0MIti3KbFBRcUCUhpRSlGgVS81oFkdArnskuez2OHV9lChoBmgJaA9DCHE486t5D3JAlIaUUpRoFUvbaBZHQK57SLG7z091fZQoaAZoCWgPQwiA9E2ahrdxQJSGlFKUaBVL1mgWR0Cue1s36yjYdX2UKGgGaAloD0MI/rrTnaf4Y0CUhpRSlGgVTegDaBZHQK57l3pwCKd1fZQoaAZoCWgPQwhr8pTVNDhxQJSGlFKUaBVL2GgWR0CufFGlyimEdX2UKGgGaAloD0MIBWucTUeTbkCUhpRSlGgVS/RoFkdArny5ON5t33V9lChoBmgJaA9DCFzoSgSqq3JAlIaUUpRoFUvPaBZHQK582WRigCh1fZQoaAZoCWgPQwje5SK+U6ZxQJSGlFKUaBVL0WgWR0CufOKu8scydX2UKGgGaAloD0MIJ92WyAXFckCUhpRSlGgVS9loFkdArn0QP07KaHV9lChoBmgJaA9DCMzR4/e2p21AlIaUUpRoFUv4aBZHQK59Nqt5le51fZQoaAZoCWgPQwiE9X8OMzxyQJSGlFKUaBVLyGgWR0CufVgFPi1idX2UKGgGaAloD0MI3xtDAHABb0CUhpRSlGgVS9FoFkdArowvcFhXsHV9lChoBmgJaA9DCKdB0TwAgG5AlIaUUpRoFUvbaBZHQK6Men9ehPF1fZQoaAZoCWgPQwgeNSbEnGNxQJSGlFKUaBVL3WgWR0CujJRHPNVzdX2UKGgGaAloD0MI46jcRG1KcUCUhpRSlGgVTRsBaBZHQK6MrqLS/j91fZQoaAZoCWgPQwiOdtzwe6hyQJSGlFKUaBVL1WgWR0CujLE56t1ZdX2UKGgGaAloD0MIayi1F9GQUkCUhpRSlGgVS5VoFkdAroy2zyBkJHV9lChoBmgJaA9DCC6thsQ99XJAlIaUUpRoFUv3aBZHQK6Mx5vcafl1fZQoaAZoCWgPQwhrgT0m0nVyQJSGlFKUaBVL4mgWR0CujSCXY150dX2UKGgGaAloD0MIiUShZd1mcECUhpRSlGgVTWsBaBZHQK6NX4/u9e11fZQoaAZoCWgPQwihgsML4gpzQJSGlFKUaBVLvmgWR0Cujb3lr/KhdX2UKGgGaAloD0MIRpbMsXwockCUhpRSlGgVS8loFkdAro5l5OafBnV9lChoBmgJaA9DCO7qVWS083JAlIaUUpRoFUvhaBZHQK6OdBFd9lV1fZQoaAZoCWgPQwjtD5Tb9kZzQJSGlFKUaBVL3WgWR0Cujt/tY0VKdX2UKGgGaAloD0MIpnwIqgZAcECUhpRSlGgVS/doFkdAro8Ag1WKdnV9lChoBmgJaA9DCC5W1GDad3JAlIaUUpRoFU0MAWgWR0CujyL9uP3jdX2UKGgGaAloD0MI56bNOI0/dECUhpRSlGgVS9loFkdArpAhGYrrgXV9lChoBmgJaA9DCKOs30zMCW9AlIaUUpRoFUvaaBZHQK6QQsasIVx1fZQoaAZoCWgPQwinQdE8wNJwQJSGlFKUaBVL42gWR0CukHE9lmOEdX2UKGgGaAloD0MIUWhZ9w/DcUCUhpRSlGgVS9FoFkdArpCcpTdcjnV9lChoBmgJaA9DCBea6zQSWnFAlIaUUpRoFUv9aBZHQK6QrjPv8ZV1fZQoaAZoCWgPQwj922W/7iJ0QJSGlFKUaBVNDwFoFkdArpC5xT850nV9lChoBmgJaA9DCKTH7216K3NAlIaUUpRoFU0EAWgWR0CukPid8RcvdX2UKGgGaAloD0MIvCAiNW3zbUCUhpRSlGgVTQIBaBZHQK6RBuO0b991fZQoaAZoCWgPQwjFH0Wd+TtwQJSGlFKUaBVL52gWR0CukTBP9DQadX2UKGgGaAloD0MIZCR7hJpFT0CUhpRSlGgVS4poFkdArpE3rGBFu3V9lChoBmgJaA9DCH6NJEE4t25AlIaUUpRoFUvzaBZHQK6RwEJ0GNd1fZQoaAZoCWgPQwjVJeMYScBxQJSGlFKUaBVL42gWR0CukjSH/LkkdX2UKGgGaAloD0MI2h694X6ncECUhpRSlGgVS+loFkdArpJAVwgkknV9lChoBmgJaA9DCLYsX5chnXFAlIaUUpRoFUvVaBZHQK6SfgpBomJ1fZQoaAZoCWgPQwieCOI8nFQ5QJSGlFKUaBVLpGgWR0Cukr0pEx7BdX2UKGgGaAloD0MITtTS3IrzcUCUhpRSlGgVS9xoFkdArpK6B3A2ynV9lChoBmgJaA9DCIffTbfsm3JAlIaUUpRoFUvRaBZHQK6TuMAFPi11fZQoaAZoCWgPQwiwO915onNxQJSGlFKUaBVLzWgWR0CulC9B0ITodX2UKGgGaAloD0MIbqErESh1ckCUhpRSlGgVS8poFkdArpQzGaQV9HV9lChoBmgJaA9DCH4AUps4sXJAlIaUUpRoFUvgaBZHQK6UP0Lc9GJ1fZQoaAZoCWgPQwjSqwFKw8ZwQJSGlFKUaBVL5WgWR0CulEkoOQQudX2UKGgGaAloD0MIejnsvuMgcUCUhpRSlGgVTQoBaBZHQK6UfwXIlt11fZQoaAZoCWgPQwgYC0PkdBVzQJSGlFKUaBVL0WgWR0CulIWugYgrdX2UKGgGaAloD0MIgJpattbRcECUhpRSlGgVS+doFkdArpTPLxI8Q3V9lChoBmgJaA9DCKjEdYyr2HJAlIaUUpRoFU0lAWgWR0CulS7/GVAzdX2UKGgGaAloD0MIUrXdBN+GcUCUhpRSlGgVS+VoFkdArpVSCxu89XV9lChoBmgJaA9DCDnyQGSR1HFAlIaUUpRoFUvVaBZHQK6VkXHim2t1fZQoaAZoCWgPQwhN9WT+0WtzQJSGlFKUaBVL22gWR0CuleJKraM8dX2UKGgGaAloD0MIV5OnrOY+ckCUhpRSlGgVS/doFkdArpYE2eg+QnV9lChoBmgJaA9DCEpFY+2vTnFAlIaUUpRoFUvbaBZHQK6WIK9f1Hx1fZQoaAZoCWgPQwhVibK3lIZxQJSGlFKUaBVL52gWR0CulkpSR8txdX2UKGgGaAloD0MIwVjfwOTjbkCUhpRSlGgVS9JoFkdArpbmBSUC73V9lChoBmgJaA9DCCBB8WPMfnFAlIaUUpRoFUvQaBZHQK6XVZq20At1fZQoaAZoCWgPQwhP5h99U/hwQJSGlFKUaBVL2mgWR0Cul3RKg7HRdX2UKGgGaAloD0MIn3djQaFRcECUhpRSlGgVS+FoFkdArpeQB5ooNXV9lChoBmgJaA9DCEseT8uPG3FAlIaUUpRoFUvWaBZHQK6XrshPj4p1fZQoaAZoCWgPQwgPYJFfP8BwQJSGlFKUaBVL8GgWR0Cul93cxj8UdX2UKGgGaAloD0MIDTm2niFhU0CUhpRSlGgVS7doFkdArpgODQJHAnV9lChoBmgJaA9DCK0wfa8hB3JAlIaUUpRoFUvOaBZHQK6YozCUHIJ1fZQoaAZoCWgPQwiKVYMwd0pyQJSGlFKUaBVNAAFoFkdArpiin1nM+3V9lChoBmgJaA9DCB8wD5myPnFAlIaUUpRoFU3XA2gWR0CumLCQ9zOpdX2UKGgGaAloD0MIysABLV3CcECUhpRSlGgVTSUBaBZHQK6Y4eXiR4h1fZQoaAZoCWgPQwgQXOUJxOByQJSGlFKUaBVNEAFoFkdArpk6s8xKx3V9lChoBmgJaA9DCPomTYMigHFAlIaUUpRoFUvgaBZHQK6ZqVPepGZ1fZQoaAZoCWgPQwjWxtgJ7/JwQJSGlFKUaBVL92gWR0CumdmzjWCmdX2UKGgGaAloD0MINBDLZo4ocUCUhpRSlGgVS9BoFkdArpoUP4EfT3V9lChoBmgJaA9DCKck63C0vHFAlIaUUpRoFUvLaBZHQK6aeZiNKiB1fZQoaAZoCWgPQwi6TbhXZnZxQJSGlFKUaBVLzGgWR0CumpxOLzf8dX2UKGgGaAloD0MIDXBBtiw7OkCUhpRSlGgVS4poFkdArprdAHE/B3V9lChoBmgJaA9DCDKs4o3Mqm9AlIaUUpRoFUvjaBZHQK6bOEEkjX51fZQoaAZoCWgPQwjPukbLQbZxQJSGlFKUaBVL4WgWR0Cum6IEjgQ6dX2UKGgGaAloD0MIYYpyaXzQb0CUhpRSlGgVS9RoFkdArpwVQfp2U3VlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 616,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14a2395229a3e10c73b4f1fd9e04984021934d43d8e9bfe62037cfbf97367381
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d45ec037eaa6e0a9f395c702354d4fcfe004c07ba0db19872111ac8c5a2f52b
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8020ece7dfeb8e09eff92ca89f9a5e9e52a10b4c51818802e8e9dc39dbdd252f
|
3 |
+
size 186627
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 263.46973199674494, "std_reward": 44.34004485371763, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:44:15.103287"}
|