File size: 10,187 Bytes
ca04560 3ffd510 217293f ca04560 217293f 3ffd510 217293f 3ffd510 217293f bc6d654 3ffd510 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 0705fd3 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 88775ea ca04560 e0ffa30 ca04560 4a188d2 7fb67dc e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 ca04560 e0ffa30 6a49ef8 3ffd510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
language:
- nl
license: cc-by-nc-4.0
library_name: transformers
tags:
- trl
- dpo
- conversational
datasets:
- BramVanroy/ultra_feedback_dutch_cleaned
pipeline_tag: text-generation
inference: false
model-index:
- name: Qwen1.5-7B-Dutch-Chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.34
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 15.47
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=robinsmits/Qwen1.5-7B-Dutch-Chat
name: Open LLM Leaderboard
---
# Qwen1.5-7B-Dutch-Chat
## Model description
This DPO aligned model is the merged version of the adapter model [robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo](https://huggingface.co/robinsmits/Qwen1.5-7B-Dutch-Chat-Dpo).
DPO Finetuning was performed on the Dutch [BramVanroy/ultra_feedback_dutch_cleaned](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch_cleaned) dataset.
See [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) for all information about the base model.
## Model usage
A basic example of how to use the finetuned model.
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = 'cuda'
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat'
model = AutoModelForCausalLM.from_pretrained(model_name,
device_map = "auto",
torch_dtype = torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]
encoded_ids = tokenizer.apply_chat_template(messages,
add_generation_prompt = True,
return_tensors = "pt")
generated_ids = model.generate(input_ids = encoded_ids.to(device),
max_new_tokens = 256,
do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
Below the chat template with the generated output.
```
<|im_start|>system
Je bent een behulpzame AI assistent<|im_end|>
<|im_start|>user
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
<|im_start|>assistant
Hallo! Appels zijn zo'n lekkere fruitsoort. Ze zijn zoet en knapperig, en je kunt ze koken, roosteren of zelfs in smoothies doen. Er zijn heel veel verschillende soorten appels, zoals de Fuji, Granny Smith en Gala. De appels die je meestal in de winkel koopt, komen van bomen die in het oosten van Noord-Amerika groeien.<|im_end|>
```
## Intended uses & limitations
As with all LLM's this model can also experience bias and hallucinations. Regardless of how you use this model always perform the necessary testing and validation.
The used dataset does not allow commercial usage.
## Training and evaluation data
The training notebook is available at the following link: [Qwen1_5_7B_Dutch_Chat_DPO](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Qwen1_5_7B_Dutch_Chat_DPO.ipynb)
Training was performed with Google Colab PRO on a A100 - 40GB and lasted around 4 hours.
It achieves the following results on the evaluation set:
- Loss: 0.2610
- Rewards/chosen: -0.7248
- Rewards/rejected: -2.6224
- Rewards/accuracies: 0.9170
- Rewards/margins: 1.8976
- Logps/rejected: -877.8102
- Logps/chosen: -783.4282
- Logits/rejected: -0.8110
- Logits/chosen: -0.7528
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5503 | 0.1 | 30 | 0.4684 | -0.0439 | -0.6295 | 0.8919 | 0.5856 | -837.9513 | -769.8103 | -0.9335 | -0.8894 |
| 0.4178 | 0.2 | 60 | 0.3568 | -0.3713 | -1.4769 | 0.9015 | 1.1056 | -854.9000 | -776.3594 | -0.8768 | -0.8276 |
| 0.3264 | 0.29 | 90 | 0.3143 | -0.4893 | -1.8730 | 0.9151 | 1.3837 | -862.8228 | -778.7191 | -0.8428 | -0.7929 |
| 0.2999 | 0.39 | 120 | 0.2885 | -0.6832 | -2.3118 | 0.9151 | 1.6286 | -871.5981 | -782.5971 | -0.8260 | -0.7730 |
| 0.3454 | 0.49 | 150 | 0.2749 | -0.7239 | -2.4904 | 0.9189 | 1.7664 | -875.1693 | -783.4113 | -0.8235 | -0.7678 |
| 0.3354 | 0.59 | 180 | 0.2685 | -0.6775 | -2.4859 | 0.9170 | 1.8084 | -875.0795 | -782.4824 | -0.8130 | -0.7574 |
| 0.2848 | 0.68 | 210 | 0.2652 | -0.7157 | -2.5692 | 0.9131 | 1.8535 | -876.7465 | -783.2466 | -0.8157 | -0.7586 |
| 0.3437 | 0.78 | 240 | 0.2621 | -0.7233 | -2.6091 | 0.9151 | 1.8857 | -877.5430 | -783.3994 | -0.8138 | -0.7561 |
| 0.2655 | 0.88 | 270 | 0.2611 | -0.7183 | -2.6154 | 0.9151 | 1.8971 | -877.6708 | -783.2995 | -0.8106 | -0.7524 |
| 0.3442 | 0.98 | 300 | 0.2610 | -0.7248 | -2.6224 | 0.9170 | 1.8976 | -877.8102 | -783.4282 | -0.8110 | -0.7528 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
## Citation
Thanks to the creators of Qwen1.5 for there great work!
```
@article{qwen,
title={Qwen Technical Report},
author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
journal={arXiv preprint arXiv:2309.16609},
year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_robinsmits__Qwen1.5-7B-Dutch-Chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.66|
|AI2 Reasoning Challenge (25-Shot)|53.92|
|HellaSwag (10-Shot) |76.03|
|MMLU (5-Shot) |62.38|
|TruthfulQA (0-shot) |45.34|
|Winogrande (5-shot) |68.82|
|GSM8k (5-shot) |15.47|
|