robinsmits commited on
Commit
ed497aa
·
1 Parent(s): 8eb1215

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -5,9 +5,49 @@ datasets:
5
  - BramVanroy/alpaca-cleaned-dutch
6
  language:
7
  - nl
 
8
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ## Training procedure
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  The following `bitsandbytes` quantization config was used during training:
13
  - load_in_8bit: False
@@ -19,7 +59,18 @@ The following `bitsandbytes` quantization config was used during training:
19
  - bnb_4bit_quant_type: nf4
20
  - bnb_4bit_use_double_quant: True
21
  - bnb_4bit_compute_dtype: bfloat16
22
- ### Framework versions
23
 
 
 
 
 
 
 
 
 
24
 
 
 
 
 
25
  - PEFT 0.4.0.dev0
 
5
  - BramVanroy/alpaca-cleaned-dutch
6
  language:
7
  - nl
8
+ pipeline_tag: text-generation
9
  ---
10
+
11
+ # open_llama_7b_alpaca_clean_dutch_qlora
12
+
13
+ ## Model description
14
+
15
+ This adapter model is a fine-tuned version of [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) on the [BramVanroy/alpaca-cleaned-dutch](https://www.huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset.
16
+
17
+ See [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) for all information about the base model.
18
+
19
+ ## Intended uses & limitations
20
+
21
+ The open_llama_7b model was primarily trained on the English language. Part of the dataset was a Wikipedia dump containing pages in 20 languages.
22
+ Dutch was one of those languages. Given the size of the total dataset and the wikipedia part the Dutch language was very likely less than 0.5% of the total data.
23
+
24
+ The primary intention of this model is to explore the use of the Dutch language in combination with an Open LLM.
25
+
26
+ ## Training and evaluation data
27
+
28
+ This model was trained on the [BramVanroy/alpaca-cleaned-dutch](https://www.huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset.
29
+
30
+ Commercial use is forbidden. This model is intended for research only.
31
+
32
  ## Training procedure
33
 
34
+ This model was finetuned with a QLoRA setup on a Google Colab A100 GPU in about 6.5 hours.
35
+
36
+ The notebook used for training can be found here: [Training Notebook](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Open_Llama_7B_Alpaca_Clean_Dutch_Qlora.ipynb)
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0002
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_steps: 64
50
+ - training_steps: 1536
51
 
52
  The following `bitsandbytes` quantization config was used during training:
53
  - load_in_8bit: False
 
59
  - bnb_4bit_quant_type: nf4
60
  - bnb_4bit_use_double_quant: True
61
  - bnb_4bit_compute_dtype: bfloat16
 
62
 
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss |
66
+ |:-------------:|:-----:|:----:|:---------------:|
67
+ | 1.1240 | 1.0 | 768 | 1.1227 |
68
+ | 1.0177 | 2.0 | 1536 | 1.0645 |
69
+
70
+ ### Framework versions
71
 
72
+ - Transformers 4.30.2
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.13.1
75
+ - Tokenizers 0.13.3
76
  - PEFT 0.4.0.dev0