rodrigoclira commited on
Commit
c873a44
·
1 Parent(s): 6a9170f

First Push

Browse files
README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: ml-agents
3
+ tags:
4
+ - SoccerTwos
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - ML-Agents-SoccerTwos
8
+ ---
9
+
10
+ # **poca** Agent playing **SoccerTwos**
11
+ This is a trained model of a **poca** agent playing **SoccerTwos**
12
+ using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
13
+
14
+ ## Usage (with ML-Agents)
15
+ The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
16
+
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+ - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
19
+ browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
20
+ - A *longer tutorial* to understand how works ML-Agents:
21
+ https://huggingface.co/learn/deep-rl-course/unit5/introduction
22
+
23
+ ### Resume the training
24
+ ```bash
25
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
26
+ ```
27
+
28
+ ### Watch your Agent play
29
+ You can watch your agent **playing directly in your browser**
30
+
31
+ 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
32
+ 2. Step 1: Find your model_id: rodrigoclira/poca-SoccerTwos
33
+ 3. Step 2: Select your *.nn /*.onnx file
34
+ 4. Click on Watch the agent play 👀
35
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default_settings": null, "behaviors": {"SoccerTwos": {"trainer_type": "poca", "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 3, "learning_rate_schedule": "constant", "beta_schedule": "constant", "epsilon_schedule": "constant"}, "checkpoint_interval": 500000, "network_settings": {"normalize": false, "hidden_units": 512, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}, "reward_signals": {"extrinsic": {"gamma": 0.99, "strength": 1.0, "network_settings": {"normalize": false, "hidden_units": 128, "num_layers": 2, "vis_encode_type": "simple", "memory": null, "goal_conditioning_type": "hyper", "deterministic": false}}}, "init_path": null, "keep_checkpoints": 5, "even_checkpoints": false, "max_steps": 50000000, "time_horizon": 1000, "summary_freq": 10000, "threaded": false, "self_play": {"save_steps": 50000, "team_change": 200000, "swap_steps": 2000, "window": 10, "play_against_latest_model_ratio": 0.5, "initial_elo": 1200.0}, "behavioral_cloning": null}}, "env_settings": {"env_path": "./training-envs-executables/SoccerTwos/SoccerTwos.x86_64", "env_args": null, "base_port": 5005, "num_envs": 1, "num_areas": 1, "seed": -1, "max_lifetime_restarts": 10, "restarts_rate_limit_n": 1, "restarts_rate_limit_period_s": 60}, "engine_settings": {"width": 84, "height": 84, "quality_level": 5, "time_scale": 20, "target_frame_rate": -1, "capture_frame_rate": 60, "no_graphics": true}, "environment_parameters": null, "checkpoint_settings": {"run_id": "SoccerTwos", "initialize_from": null, "load_model": false, "resume": false, "force": false, "train_model": false, "inference": false, "results_dir": "results"}, "torch_settings": {"device": null}, "debug": false}
configuration.yaml ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_settings: null
2
+ behaviors:
3
+ SoccerTwos:
4
+ trainer_type: poca
5
+ hyperparameters:
6
+ batch_size: 2048
7
+ buffer_size: 20480
8
+ learning_rate: 0.0003
9
+ beta: 0.005
10
+ epsilon: 0.2
11
+ lambd: 0.95
12
+ num_epoch: 3
13
+ learning_rate_schedule: constant
14
+ beta_schedule: constant
15
+ epsilon_schedule: constant
16
+ checkpoint_interval: 500000
17
+ network_settings:
18
+ normalize: false
19
+ hidden_units: 512
20
+ num_layers: 2
21
+ vis_encode_type: simple
22
+ memory: null
23
+ goal_conditioning_type: hyper
24
+ deterministic: false
25
+ reward_signals:
26
+ extrinsic:
27
+ gamma: 0.99
28
+ strength: 1.0
29
+ network_settings:
30
+ normalize: false
31
+ hidden_units: 128
32
+ num_layers: 2
33
+ vis_encode_type: simple
34
+ memory: null
35
+ goal_conditioning_type: hyper
36
+ deterministic: false
37
+ init_path: null
38
+ keep_checkpoints: 5
39
+ even_checkpoints: false
40
+ max_steps: 50000000
41
+ time_horizon: 1000
42
+ summary_freq: 10000
43
+ threaded: false
44
+ self_play:
45
+ save_steps: 50000
46
+ team_change: 200000
47
+ swap_steps: 2000
48
+ window: 10
49
+ play_against_latest_model_ratio: 0.5
50
+ initial_elo: 1200.0
51
+ behavioral_cloning: null
52
+ env_settings:
53
+ env_path: ./training-envs-executables/SoccerTwos/SoccerTwos.x86_64
54
+ env_args: null
55
+ base_port: 5005
56
+ num_envs: 1
57
+ num_areas: 1
58
+ seed: -1
59
+ max_lifetime_restarts: 10
60
+ restarts_rate_limit_n: 1
61
+ restarts_rate_limit_period_s: 60
62
+ engine_settings:
63
+ width: 84
64
+ height: 84
65
+ quality_level: 5
66
+ time_scale: 20
67
+ target_frame_rate: -1
68
+ capture_frame_rate: 60
69
+ no_graphics: true
70
+ environment_parameters: null
71
+ checkpoint_settings:
72
+ run_id: SoccerTwos
73
+ initialize_from: null
74
+ load_model: false
75
+ resume: false
76
+ force: false
77
+ train_model: false
78
+ inference: false
79
+ results_dir: results
80
+ torch_settings:
81
+ device: null
82
+ debug: false
run_logs/timers.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "root",
3
+ "metadata": {
4
+ "timer_format_version": "0.1.0",
5
+ "start_time_seconds": "1687879226",
6
+ "python_version": "3.9.16 (main, May 15 2023, 23:46:34) \n[GCC 11.2.0]",
7
+ "command_line_arguments": "/home/rcls/APPs/anaconda3/envs/rl/bin/mlagents-learn config/poca/SoccerTwos.yaml --env=./training-envs-executables/SoccerTwos/SoccerTwos.x86_64 --run-id=SoccerTwos --no-graphics",
8
+ "mlagents_version": "0.31.0.dev0",
9
+ "mlagents_envs_version": "0.31.0.dev0",
10
+ "communication_protocol_version": "1.5.0",
11
+ "pytorch_version": "1.11.0+cu102",
12
+ "numpy_version": "1.21.2",
13
+ "end_time_seconds": "1687879226"
14
+ },
15
+ "total": 0.030692214000737295,
16
+ "count": 1,
17
+ "self": 0.0052612689905799925,
18
+ "children": {
19
+ "run_training.setup": {
20
+ "total": 0.008501765987602994,
21
+ "count": 1,
22
+ "self": 0.008501765987602994
23
+ },
24
+ "TrainerController.start_learning": {
25
+ "total": 0.016929179022554308,
26
+ "count": 1,
27
+ "self": 0.00025059201288968325,
28
+ "children": {
29
+ "TrainerController._reset_env": {
30
+ "total": 0.016669094999087974,
31
+ "count": 1,
32
+ "self": 0.016669094999087974
33
+ },
34
+ "trainer_threads": {
35
+ "total": 1.5220139175653458e-06,
36
+ "count": 1,
37
+ "self": 1.5220139175653458e-06
38
+ },
39
+ "TrainerController._save_models": {
40
+ "total": 7.969996659085155e-06,
41
+ "count": 1,
42
+ "self": 7.969996659085155e-06
43
+ }
44
+ }
45
+ }
46
+ }
47
+ }
run_logs/training_status.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "stats_format_version": "0.3.0",
4
+ "mlagents_version": "0.31.0.dev0",
5
+ "torch_version": "1.11.0+cu102"
6
+ }
7
+ }