---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- text-classification
model_format: pickle
model_file: pipeline_sentiment_analysis.pkl
---
# Model description
This is a pipeline for sentiment analysis trained on the Stanford Twitter dataset.TF-IDF vectorizer is used for vectorization.
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|---------------------------|-------------------------|
| memory | |
| steps | [('vectorizer', TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),
sublinear_tf=True)), ('mnb', MultinomialNB())] |
| verbose | False |
| vectorizer | TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),
sublinear_tf=True) |
| mnb | MultinomialNB() |
| vectorizer__analyzer | word |
| vectorizer__binary | False |
| vectorizer__decode_error | strict |
| vectorizer__dtype |
Pipeline(steps=[('vectorizer',TfidfVectorizer(encoding='latin-1', min_df=5,ngram_range=(1, 2), sublinear_tf=True)),('mnb', MultinomialNB())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('vectorizer',TfidfVectorizer(encoding='latin-1', min_df=5,ngram_range=(1, 2), sublinear_tf=True)),('mnb', MultinomialNB())])
TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),sublinear_tf=True)
MultinomialNB()