--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-0.0003-bs-2-maxep-6 results: [] --- # bart-abs-1509-0313-lr-0.0003-bs-2-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8567 - Rouge/rouge1: 0.3035 - Rouge/rouge2: 0.072 - Rouge/rougel: 0.2428 - Rouge/rougelsum: 0.2429 - Bertscore/bertscore-precision: 0.8724 - Bertscore/bertscore-recall: 0.8571 - Bertscore/bertscore-f1: 0.8646 - Meteor: 0.2108 - Gen Len: 29.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.4741 | 1.0 | 434 | 4.0269 | 0.2771 | 0.0691 | 0.2057 | 0.2053 | 0.8702 | 0.8596 | 0.8648 | 0.233 | 39.0 | | 3.0848 | 2.0 | 868 | 3.9978 | 0.2554 | 0.0651 | 0.2183 | 0.2183 | 0.8646 | 0.8589 | 0.8617 | 0.2022 | 29.1364 | | 1.9491 | 3.0 | 1302 | 4.4524 | 0.2722 | 0.0714 | 0.2029 | 0.2031 | 0.8612 | 0.8618 | 0.8615 | 0.2582 | 47.0 | | 1.0603 | 4.0 | 1736 | 5.4022 | 0.2465 | 0.0593 | 0.2071 | 0.2071 | 0.8464 | 0.858 | 0.8521 | 0.2294 | 42.0 | | 0.5921 | 5.0 | 2170 | 6.1146 | 0.3035 | 0.072 | 0.2428 | 0.2429 | 0.8724 | 0.8571 | 0.8646 | 0.2108 | 29.0 | | 0.3762 | 6.0 | 2604 | 6.8567 | 0.3035 | 0.072 | 0.2428 | 0.2429 | 0.8724 | 0.8571 | 0.8646 | 0.2108 | 29.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1