--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-06-bs-4-maxep-10 results: [] --- # bart-abs-1509-0313-lr-3e-06-bs-4-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5518 - Rouge/rouge1: 0.3111 - Rouge/rouge2: 0.0793 - Rouge/rougel: 0.2212 - Rouge/rougelsum: 0.2213 - Bertscore/bertscore-precision: 0.8659 - Bertscore/bertscore-recall: 0.864 - Bertscore/bertscore-f1: 0.8649 - Meteor: 0.228 - Gen Len: 36.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.4698 | 1.0 | 217 | 6.0332 | 0.2584 | 0.0526 | 0.1868 | 0.1869 | 0.8466 | 0.8559 | 0.8512 | 0.2654 | 55.0 | | 0.4866 | 2.0 | 434 | 6.1644 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.4497 | 3.0 | 651 | 6.2268 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.4248 | 4.0 | 868 | 6.3031 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.4054 | 5.0 | 1085 | 6.4024 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3937 | 6.0 | 1302 | 6.4675 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3833 | 7.0 | 1519 | 6.5040 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3761 | 8.0 | 1736 | 6.5270 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.374 | 9.0 | 1953 | 6.5454 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | | 0.3686 | 10.0 | 2170 | 6.5518 | 0.3111 | 0.0793 | 0.2212 | 0.2213 | 0.8659 | 0.864 | 0.8649 | 0.228 | 36.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1