--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-2409-0144-lr-3e-05-bs-4-maxep-6 results: [] --- # bart-abs-2409-0144-lr-3e-05-bs-4-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3498 - Rouge/rouge1: 0.4687 - Rouge/rouge2: 0.2167 - Rouge/rougel: 0.3984 - Rouge/rougelsum: 0.3997 - Bertscore/bertscore-precision: 0.8968 - Bertscore/bertscore-recall: 0.8932 - Bertscore/bertscore-f1: 0.8948 - Meteor: 0.4183 - Gen Len: 37.6273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.3602 | 1.0 | 217 | 2.0806 | 0.4443 | 0.2067 | 0.3739 | 0.3745 | 0.8966 | 0.8891 | 0.8927 | 0.3937 | 38.2364 | | 1.6559 | 2.0 | 434 | 1.9951 | 0.4581 | 0.22 | 0.3968 | 0.3973 | 0.8994 | 0.8919 | 0.8955 | 0.4032 | 35.1273 | | 1.2943 | 3.0 | 651 | 2.0581 | 0.4592 | 0.2156 | 0.3932 | 0.3942 | 0.8995 | 0.8924 | 0.8958 | 0.4071 | 35.2364 | | 1.0197 | 4.0 | 868 | 2.1312 | 0.478 | 0.2304 | 0.409 | 0.4111 | 0.9003 | 0.8935 | 0.8967 | 0.4209 | 36.1091 | | 0.8117 | 5.0 | 1085 | 2.2532 | 0.4878 | 0.2376 | 0.4181 | 0.4194 | 0.9009 | 0.8945 | 0.8976 | 0.4293 | 35.2636 | | 0.6733 | 6.0 | 1302 | 2.3498 | 0.4687 | 0.2167 | 0.3984 | 0.3997 | 0.8968 | 0.8932 | 0.8948 | 0.4183 | 37.6273 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1