File size: 2,958 Bytes
5f6cc3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
architecture:
    backbone_dtype: float16
    force_embedding_gradients: false
    gradient_checkpointing: true
    intermediate_dropout: 0.0
    pretrained: true
    pretrained_weights: ''
augmentation:
    random_parent_probability: 0.0
    skip_parent_probability: 0.0
    token_mask_probability: 0.0
dataset:
    add_eos_token_to_answer: true
    add_eos_token_to_prompt: true
    answer_column: "Answer\r\r"
    chatbot_author: H2O.ai
    chatbot_name: h2oGPT
    data_sample: 1.0
    data_sample_choice:
    - Train
    - Validation
    limit_chained_samples: false
    mask_prompt_labels: true
    parent_id_column: None
    personalize: false
    prompt_column:
    - Context
    text_answer_separator: <|answer|>
    text_prompt_start: <|prompt|>
    train_dataframe: /home/ubuntu/h2o-llmstudio/data/user/QnA_with_context/latest_finetune.csv
    validation_dataframe: None
    validation_size: 0.01
    validation_strategy: automatic
environment:
    compile_model: false
    find_unused_parameters: false
    gpus:
    - '0'
    huggingface_branch: main
    mixed_precision: true
    number_of_workers: 4
    seed: -1
    trust_remote_code: true
    use_fsdp: false
experiment_name: QnA-with-context
llm_backbone: lmsys/vicuna-7b-v1.3
logging:
    logger: None
    neptune_project: ''
    number_of_texts: 10
output_directory: /home/ubuntu/h2o-llmstudio/output/user/QnA-with-context/
prediction:
    batch_size_inference: 0
    do_sample: false
    max_length_inference: 256
    metric: BLEU
    metric_gpt_model: gpt-3.5-turbo-0301
    min_length_inference: 2
    num_beams: 1
    num_history: 4
    repetition_penalty: 1.2
    stop_tokens: ''
    temperature: 0.3
    top_k: 0
    top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
    add_prefix_space: false
    add_prompt_answer_tokens: false
    max_length: 512
    max_length_answer: 256
    max_length_prompt: 256
    padding_quantile: 1.0
    use_fast: true
training:
    adaptive_kl_control: true
    advantages_gamma: 0.99
    advantages_lambda: 0.95
    batch_size: 2
    differential_learning_rate: 1.0e-05
    differential_learning_rate_layers: []
    drop_last_batch: true
    epochs: 4
    evaluate_before_training: false
    evaluation_epochs: 1.0
    grad_accumulation: 1
    gradient_clip: 0.0
    initial_kl_coefficient: 0.2
    kl_horizon: 10000
    kl_target: 6.0
    learning_rate: 0.0001
    lora: true
    lora_alpha: 16
    lora_dropout: 0.05
    lora_r: 4
    lora_target_modules: ''
    loss_function: TokenAveragedCrossEntropy
    offload_reward_model: false
    optimizer: AdamW
    ppo_batch_size: 1
    ppo_clip_policy: 0.2
    ppo_clip_value: 0.2
    ppo_epochs: 4
    ppo_generate_temperature: 1.0
    reward_model: OpenAssistant/reward-model-deberta-v3-large-v2
    save_best_checkpoint: false
    scaling_factor_value_loss: 0.1
    schedule: Cosine
    train_validation_data: false
    use_rlhf: false
    warmup_epochs: 0.0
    weight_decay: 0.0