Commit
·
a2ef274
1
Parent(s):
347cdb6
first training of the lunar landar with ppo
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-lunarlander-v2-smartpants.zip +3 -0
- ppo-lunarlander-v2-smartpants/_stable_baselines3_version +1 -0
- ppo-lunarlander-v2-smartpants/data +99 -0
- ppo-lunarlander-v2-smartpants/policy.optimizer.pth +3 -0
- ppo-lunarlander-v2-smartpants/policy.pth +3 -0
- ppo-lunarlander-v2-smartpants/pytorch_variables.pth +3 -0
- ppo-lunarlander-v2-smartpants/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.06 +/- 19.59
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a92971fc040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a92971fc0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a92971fc160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a92971fc1f0>", "_build": "<function ActorCriticPolicy._build at 0x7a92971fc280>", "forward": "<function ActorCriticPolicy.forward at 0x7a92971fc310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a92971fc3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a92971fc430>", "_predict": "<function ActorCriticPolicy._predict at 0x7a92971fc4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a92971fc550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a92971fc5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a92971fc670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a929719a6c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692973287942167750, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN6Nr0UuIW6iFPXug9807VaMVO6w/D6OQAAgD8AAIA/puogvo8SXry8/BU7Mg06OcP6xz2FNUi6AACAPwAAgD/N17e8uL6fufaqprui0gM4SUYQu4QfFbcAAIA/AACAP81x9bzhtpe6Hqshu1rDF7dJCgs7ofk6OgAAgD8AAIA/DY32vWySjTx4Nic94q1fvtsvt70GBO49AAAAAAAAAAAT8Ra+B9rkPiKZjj1bVIa+ygmIvTBCgj0AAAAAAAAAAICZJr3DaVy6Yl8aOQuYKTSphlW4dxw1uAAAgD8AAIA/M7t1O3v6kLolb9i7ZOBKOB5PJ7qbtmM3AACAPwAAgD9D4Wu+DuA9P9p1kL1N7bm+OZ7xvQ1aIrwAAAAAAAAAAJpCTD3hFJS6sr0Ou39wlLYSUIa4QwMlOgAAgD8AAIA/M2OuuylkQLrSYrM7Yu0CNfk8f7sEjgg0AACAPwAAgD+anaY7XNtXutt37Lpu4hW2BS9RO4oZCToAAIA/AACAPzNLLTvhHoe6azdQOd6CSzRPdjQ7e1dyuAAAgD8AAIA/88mKvY9OH7oCh8W6Z1ZatuapqzvrQeY5AAAAAAAAgD8mloW9j4Y+uh3fgrtGK1Y4E2qKOKqB7zgAAIA/AACAPzOLMrxcG0i6opYhOm8SEDWpk766BvY+uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF0tjTa0x/OMAWyUTegDjAF0lEdAmBtnIZIg/3V9lChoBkdAY2YdkJ8fFWgHTegDaAhHQJgcZknTiKl1fZQoaAZHQGOR1ZcLSeBoB03oA2gIR0CYHhLoOhCddX2UKGgGR0BiWBjDsMRZaAdN6ANoCEdAmCBCk0rK/3V9lChoBkdAYvcJ+DvmYGgHTegDaAhHQJguInUlRgt1fZQoaAZHQEg4FWXC0nhoB0v4aAhHQJguUVi4J/p1fZQoaAZHQGZr+zt1IRRoB03oA2gIR0CYMNvKU3XJdX2UKGgGR0BgaGKsMiKSaAdN6ANoCEdAmDJ3WWhRInV9lChoBkdAQo68OCoS+WgHS+1oCEdAmDMxj8UEgXV9lChoBkdAYwX42S+xnmgHTegDaAhHQJg6OioKlYV1fZQoaAZHQFtAvwmVqvhoB03oA2gIR0CYO1FA3T/idX2UKGgGR0Bl8LCUHIIXaAdN6ANoCEdAmDwjs6aLGnV9lChoBkdAYcprBTGYKWgHTegDaAhHQJhRxvxYq5N1fZQoaAZHQGVuUOuq3mVoB03oA2gIR0CYUfYp2ECedX2UKGgGR0BTQYhdMTN/aAdL1WgIR0CYV6rFwT/RdX2UKGgGR0BmbHck+otMaAdN6ANoCEdAmGe4UBXCCXV9lChoBkdAZ0ujgydnTWgHTegDaAhHQJhoklRgqmV1fZQoaAZHQGgDqy4Wk8BoB03oA2gIR0CYdVvc8DB/dX2UKGgGR0Bmmg8SwnpjaAdN6ANoCEdAmHWInrpqynV9lChoBkdAYsTEb5uZTmgHTegDaAhHQJh2f+BH09R1fZQoaAZHQGGl034sVcloB03oA2gIR0CYd+v9tMwldX2UKGgGR0BTXW47Rv3raAdLxWgIR0CYeQu8scyWdX2UKGgGR0Bm6a2WpqASaAdN6ANoCEdAmIRE0m+j/XV9lChoBkdAZ8CLVnVXm2gHTegDaAhHQJiEZNVR1ox1fZQoaAZHQGVJxxcVxjtoB03oA2gIR0CYhkjo6jnFdX2UKGgGR0Bk78fFJg9eaAdN6ANoCEdAmId1UADJVHV9lChoBkdAY7byQPqcE2gHTegDaAhHQJiH+WdEsrd1fZQoaAZHQGHnJY1YQrdoB03oA2gIR0CYjjLa24NJdX2UKGgGR0Bn1eTHKfWdaAdN6ANoCEdAmJAhzq8lHHV9lChoBkdAM8fNVzZHu2gHS9loCEdAmJDtL6DXe3V9lChoBkdAYDwep4rz5GgHTegDaAhHQJipJGtp22Z1fZQoaAZHQGKKxMFlkH5oB03oA2gIR0CYqWRbbDdhdX2UKGgGR0BihbAUL2HtaAdN6ANoCEdAmLGEcOskp3V9lChoBkdAZFJKL876pGgHTegDaAhHQJi++yyD7Il1fZQoaAZHQGa/+D3/PxBoB03oA2gIR0CYyRrleWv9dX2UKGgGR0BndeYx+KCQaAdN6ANoCEdAmMk8CcPOIXV9lChoBkdAYGDhzeXRgWgHTegDaAhHQJjKVDtw71Z1fZQoaAZHQGTQhVMmF8JoB03oA2gIR0CYy8G5MDfWdX2UKGgGR0Bk27kXDWK/aAdN6ANoCEdAmMzfGACnxnV9lChoBkdAYbw9aEBbOmgHTegDaAhHQJjW6jO9nK51fZQoaAZHQGFeco6S1VpoB03oA2gIR0CY2MpT/ACXdX2UKGgGR0BgyJh+fAbiaAdN6ANoCEdAmNnxeHBUJnV9lChoBkdAZ40HxBmf5GgHTegDaAhHQJjadi5NGmV1fZQoaAZHQGIxyMUAT7FoB03oA2gIR0CY4qKbayrxdX2UKGgGR0BjUhLVWjoIaAdN6ANoCEdAmOUrS3LFGXV9lChoBkdAY3QIWP91l2gHTegDaAhHQJjmPG96C191fZQoaAZHQGQEhrWRRuVoB03oA2gIR0CY7CUADJU6dX2UKGgGR0Bg2+mUGFBZaAdN6ANoCEdAmOxiqhlDnnV9lChoBkdAYg7RxcVxj2gHTegDaAhHQJkDx0MgEEF1fZQoaAZHQEjbrAP/aQFoB0vbaAhHQJkFfz4DcM51fZQoaAZHQErclchTwUhoB0vsaAhHQJkFqr2g3991fZQoaAZHQDmSIoE0SAZoB0vgaAhHQJkJ5aGHpKV1fZQoaAZHQGGNq7Ackt5oB03oA2gIR0CZDiWWyC4CdX2UKGgGR0Bi/C72+PBBaAdN6ANoCEdAmRYZXMhX83V9lChoBkdAZvVyuIRAbGgHTegDaAhHQJkWN4C6pYN1fZQoaAZHQGG5ZDqnm7toB03oA2gIR0CZFxIfr8iwdX2UKGgGR0BmRhn+Q2deaAdN6ANoCEdAmRhc/D+BH3V9lChoBkdAZ8oDOkcjq2gHTegDaAhHQJkZXmq5sj51fZQoaAZHQE7SYE4ecQRoB0vxaAhHQJkmpZr56+p1fZQoaAZHQGCqEmY0EYBoB03oA2gIR0CZJymTC+DfdX2UKGgGR0BlU9adMCcPaAdN6ANoCEdAmSoH0PH1e3V9lChoBkdAY9g0mdAgPmgHTegDaAhHQJkrt3NcGC91fZQoaAZHQF0Eo0ygwoNoB03oA2gIR0CZLGw4sEq2dX2UKGgGR0BiFLO5avA5aAdN6ANoCEdAmTR4jSofjnV9lChoBkdATLbCJoCdSWgHS81oCEdAmThLdBSk03V9lChoBkdAZdfRw6ySm2gHTegDaAhHQJk7+CYkVvd1fZQoaAZHQGYVkPlMh5hoB03oA2gIR0CZUrmnwXqJdX2UKGgGR0Bm93IXCTEBaAdN6ANoCEdAmVTK6reZX3V9lChoBkdAZg0LRa5f+mgHTegDaAhHQJlU+p++dsl1fZQoaAZHQGWHXIuGsWBoB03oA2gIR0CZWhYfGMn7dX2UKGgGR0BnPd1hb4ahaAdN6ANoCEdAmWFYnfEXL3V9lChoBkdASWouIyj59GgHS/loCEdAmWUlMmF8HHV9lChoBkdAZ6JFqi48U2gHTegDaAhHQJluiCQLeAN1fZQoaAZHQGPLnl4keIVoB03oA2gIR0CZcB5q/M4cdX2UKGgGR0Bji1LxqfvnaAdN6ANoCEdAmXJNXDFZPnV9lChoBkdAYV/vBJqZdGgHTegDaAhHQJl0HsZ5zHV1fZQoaAZHQFI8sMAmzB1oB0v+aAhHQJl8BAJLM9t1fZQoaAZHQGh9zcynDSBoB03oA2gIR0CZg/SJj2BbdX2UKGgGR0Blaqa9bor4aAdN6ANoCEdAmYSPrB0p3HV9lChoBkdAZNsTlDF6zGgHTegDaAhHQJmI+pm29ct1fZQoaAZHQF9y2c8TzupoB03oA2gIR0CZiX36Q/5ddX2UKGgGR0Bj0Ry4nWrfaAdN6ANoCEdAmZBUm6XjVHV9lChoBkdAZtpAFgUlA2gHTegDaAhHQJmUrUb1h9d1fZQoaAZHQGWz42S+xnpoB03oA2gIR0CZmJ5mh/RWdX2UKGgGR0Bg3nXyy2QXaAdN6ANoCEdAmbOE/W1+iXV9lChoBkdAY07c8DB/JGgHTegDaAhHQJmzyPikwex1fZQoaAZHQGmCzW5H3DhoB03oA2gIR0CZuwUVzp5edX2UKGgGR0BiywRTS9dvaAdN6ANoCEdAmcIhje9BbHV9lChoBkdAXmOZYxL0z2gHTegDaAhHQJnMt5qubI91fZQoaAZHQGTQUgr6LwZoB03oA2gIR0CZzbg9/z8QdX2UKGgGR0BkfvKW9lEraAdN6ANoCEdAmc8zUutfX3V9lChoBkdAXWUJQcghbGgHTegDaAhHQJnQXh5xBE91fZQoaAZHQGHQ1AAyVOdoB03oA2gIR0CZ1ZNvOyE+dX2UKGgGR0Biy7pqynk1aAdN6ANoCEdAmdqeQQtjC3V9lChoBkdAZsrSZSeiBWgHTegDaAhHQJna/7oB7u51fZQoaAZHQGKk0xubZvloB03oA2gIR0CZ3hFLnLaFdX2UKGgGR0BmXNpKzzEraAdN6ANoCEdAmd6WcnVoYnV9lChoBkdAZx4EUTL4e2gHTegDaAhHQJnk0lme18d1fZQoaAZHQGKCqS5iExtoB03oA2gIR0CZ6JB+nZTRdX2UKGgGR0BejW2b5M11aAdN6ANoCEdAmewqkhzNlnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-lunarlander-v2-smartpants.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ef1f2232fc00133bd723f9931e7220c5dd010452e0aa0755d7ab42250c74a55
|
3 |
+
size 146742
|
ppo-lunarlander-v2-smartpants/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-lunarlander-v2-smartpants/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a92971fc040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a92971fc0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a92971fc160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a92971fc1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a92971fc280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a92971fc310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a92971fc3a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a92971fc430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a92971fc4c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a92971fc550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a92971fc5e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a92971fc670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a929719a6c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692973287942167750,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN6Nr0UuIW6iFPXug9807VaMVO6w/D6OQAAgD8AAIA/puogvo8SXry8/BU7Mg06OcP6xz2FNUi6AACAPwAAgD/N17e8uL6fufaqprui0gM4SUYQu4QfFbcAAIA/AACAP81x9bzhtpe6Hqshu1rDF7dJCgs7ofk6OgAAgD8AAIA/DY32vWySjTx4Nic94q1fvtsvt70GBO49AAAAAAAAAAAT8Ra+B9rkPiKZjj1bVIa+ygmIvTBCgj0AAAAAAAAAAICZJr3DaVy6Yl8aOQuYKTSphlW4dxw1uAAAgD8AAIA/M7t1O3v6kLolb9i7ZOBKOB5PJ7qbtmM3AACAPwAAgD9D4Wu+DuA9P9p1kL1N7bm+OZ7xvQ1aIrwAAAAAAAAAAJpCTD3hFJS6sr0Ou39wlLYSUIa4QwMlOgAAgD8AAIA/M2OuuylkQLrSYrM7Yu0CNfk8f7sEjgg0AACAPwAAgD+anaY7XNtXutt37Lpu4hW2BS9RO4oZCToAAIA/AACAPzNLLTvhHoe6azdQOd6CSzRPdjQ7e1dyuAAAgD8AAIA/88mKvY9OH7oCh8W6Z1ZatuapqzvrQeY5AAAAAAAAgD8mloW9j4Y+uh3fgrtGK1Y4E2qKOKqB7zgAAIA/AACAPzOLMrxcG0i6opYhOm8SEDWpk766BvY+uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF0tjTa0x/OMAWyUTegDjAF0lEdAmBtnIZIg/3V9lChoBkdAY2YdkJ8fFWgHTegDaAhHQJgcZknTiKl1fZQoaAZHQGOR1ZcLSeBoB03oA2gIR0CYHhLoOhCddX2UKGgGR0BiWBjDsMRZaAdN6ANoCEdAmCBCk0rK/3V9lChoBkdAYvcJ+DvmYGgHTegDaAhHQJguInUlRgt1fZQoaAZHQEg4FWXC0nhoB0v4aAhHQJguUVi4J/p1fZQoaAZHQGZr+zt1IRRoB03oA2gIR0CYMNvKU3XJdX2UKGgGR0BgaGKsMiKSaAdN6ANoCEdAmDJ3WWhRInV9lChoBkdAQo68OCoS+WgHS+1oCEdAmDMxj8UEgXV9lChoBkdAYwX42S+xnmgHTegDaAhHQJg6OioKlYV1fZQoaAZHQFtAvwmVqvhoB03oA2gIR0CYO1FA3T/idX2UKGgGR0Bl8LCUHIIXaAdN6ANoCEdAmDwjs6aLGnV9lChoBkdAYcprBTGYKWgHTegDaAhHQJhRxvxYq5N1fZQoaAZHQGVuUOuq3mVoB03oA2gIR0CYUfYp2ECedX2UKGgGR0BTQYhdMTN/aAdL1WgIR0CYV6rFwT/RdX2UKGgGR0BmbHck+otMaAdN6ANoCEdAmGe4UBXCCXV9lChoBkdAZ0ujgydnTWgHTegDaAhHQJhoklRgqmV1fZQoaAZHQGgDqy4Wk8BoB03oA2gIR0CYdVvc8DB/dX2UKGgGR0Bmmg8SwnpjaAdN6ANoCEdAmHWInrpqynV9lChoBkdAYsTEb5uZTmgHTegDaAhHQJh2f+BH09R1fZQoaAZHQGGl034sVcloB03oA2gIR0CYd+v9tMwldX2UKGgGR0BTXW47Rv3raAdLxWgIR0CYeQu8scyWdX2UKGgGR0Bm6a2WpqASaAdN6ANoCEdAmIRE0m+j/XV9lChoBkdAZ8CLVnVXm2gHTegDaAhHQJiEZNVR1ox1fZQoaAZHQGVJxxcVxjtoB03oA2gIR0CYhkjo6jnFdX2UKGgGR0Bk78fFJg9eaAdN6ANoCEdAmId1UADJVHV9lChoBkdAY7byQPqcE2gHTegDaAhHQJiH+WdEsrd1fZQoaAZHQGHnJY1YQrdoB03oA2gIR0CYjjLa24NJdX2UKGgGR0Bn1eTHKfWdaAdN6ANoCEdAmJAhzq8lHHV9lChoBkdAM8fNVzZHu2gHS9loCEdAmJDtL6DXe3V9lChoBkdAYDwep4rz5GgHTegDaAhHQJipJGtp22Z1fZQoaAZHQGKKxMFlkH5oB03oA2gIR0CYqWRbbDdhdX2UKGgGR0BihbAUL2HtaAdN6ANoCEdAmLGEcOskp3V9lChoBkdAZFJKL876pGgHTegDaAhHQJi++yyD7Il1fZQoaAZHQGa/+D3/PxBoB03oA2gIR0CYyRrleWv9dX2UKGgGR0BndeYx+KCQaAdN6ANoCEdAmMk8CcPOIXV9lChoBkdAYGDhzeXRgWgHTegDaAhHQJjKVDtw71Z1fZQoaAZHQGTQhVMmF8JoB03oA2gIR0CYy8G5MDfWdX2UKGgGR0Bk27kXDWK/aAdN6ANoCEdAmMzfGACnxnV9lChoBkdAYbw9aEBbOmgHTegDaAhHQJjW6jO9nK51fZQoaAZHQGFeco6S1VpoB03oA2gIR0CY2MpT/ACXdX2UKGgGR0BgyJh+fAbiaAdN6ANoCEdAmNnxeHBUJnV9lChoBkdAZ40HxBmf5GgHTegDaAhHQJjadi5NGmV1fZQoaAZHQGIxyMUAT7FoB03oA2gIR0CY4qKbayrxdX2UKGgGR0BjUhLVWjoIaAdN6ANoCEdAmOUrS3LFGXV9lChoBkdAY3QIWP91l2gHTegDaAhHQJjmPG96C191fZQoaAZHQGQEhrWRRuVoB03oA2gIR0CY7CUADJU6dX2UKGgGR0Bg2+mUGFBZaAdN6ANoCEdAmOxiqhlDnnV9lChoBkdAYg7RxcVxj2gHTegDaAhHQJkDx0MgEEF1fZQoaAZHQEjbrAP/aQFoB0vbaAhHQJkFfz4DcM51fZQoaAZHQErclchTwUhoB0vsaAhHQJkFqr2g3991fZQoaAZHQDmSIoE0SAZoB0vgaAhHQJkJ5aGHpKV1fZQoaAZHQGGNq7Ackt5oB03oA2gIR0CZDiWWyC4CdX2UKGgGR0Bi/C72+PBBaAdN6ANoCEdAmRYZXMhX83V9lChoBkdAZvVyuIRAbGgHTegDaAhHQJkWN4C6pYN1fZQoaAZHQGG5ZDqnm7toB03oA2gIR0CZFxIfr8iwdX2UKGgGR0BmRhn+Q2deaAdN6ANoCEdAmRhc/D+BH3V9lChoBkdAZ8oDOkcjq2gHTegDaAhHQJkZXmq5sj51fZQoaAZHQE7SYE4ecQRoB0vxaAhHQJkmpZr56+p1fZQoaAZHQGCqEmY0EYBoB03oA2gIR0CZJymTC+DfdX2UKGgGR0BlU9adMCcPaAdN6ANoCEdAmSoH0PH1e3V9lChoBkdAY9g0mdAgPmgHTegDaAhHQJkrt3NcGC91fZQoaAZHQF0Eo0ygwoNoB03oA2gIR0CZLGw4sEq2dX2UKGgGR0BiFLO5avA5aAdN6ANoCEdAmTR4jSofjnV9lChoBkdATLbCJoCdSWgHS81oCEdAmThLdBSk03V9lChoBkdAZdfRw6ySm2gHTegDaAhHQJk7+CYkVvd1fZQoaAZHQGYVkPlMh5hoB03oA2gIR0CZUrmnwXqJdX2UKGgGR0Bm93IXCTEBaAdN6ANoCEdAmVTK6reZX3V9lChoBkdAZg0LRa5f+mgHTegDaAhHQJlU+p++dsl1fZQoaAZHQGWHXIuGsWBoB03oA2gIR0CZWhYfGMn7dX2UKGgGR0BnPd1hb4ahaAdN6ANoCEdAmWFYnfEXL3V9lChoBkdASWouIyj59GgHS/loCEdAmWUlMmF8HHV9lChoBkdAZ6JFqi48U2gHTegDaAhHQJluiCQLeAN1fZQoaAZHQGPLnl4keIVoB03oA2gIR0CZcB5q/M4cdX2UKGgGR0Bji1LxqfvnaAdN6ANoCEdAmXJNXDFZPnV9lChoBkdAYV/vBJqZdGgHTegDaAhHQJl0HsZ5zHV1fZQoaAZHQFI8sMAmzB1oB0v+aAhHQJl8BAJLM9t1fZQoaAZHQGh9zcynDSBoB03oA2gIR0CZg/SJj2BbdX2UKGgGR0Blaqa9bor4aAdN6ANoCEdAmYSPrB0p3HV9lChoBkdAZNsTlDF6zGgHTegDaAhHQJmI+pm29ct1fZQoaAZHQF9y2c8TzupoB03oA2gIR0CZiX36Q/5ddX2UKGgGR0Bj0Ry4nWrfaAdN6ANoCEdAmZBUm6XjVHV9lChoBkdAZtpAFgUlA2gHTegDaAhHQJmUrUb1h9d1fZQoaAZHQGWz42S+xnpoB03oA2gIR0CZmJ5mh/RWdX2UKGgGR0Bg3nXyy2QXaAdN6ANoCEdAmbOE/W1+iXV9lChoBkdAY07c8DB/JGgHTegDaAhHQJmzyPikwex1fZQoaAZHQGmCzW5H3DhoB03oA2gIR0CZuwUVzp5edX2UKGgGR0BiywRTS9dvaAdN6ANoCEdAmcIhje9BbHV9lChoBkdAXmOZYxL0z2gHTegDaAhHQJnMt5qubI91fZQoaAZHQGTQUgr6LwZoB03oA2gIR0CZzbg9/z8QdX2UKGgGR0BkfvKW9lEraAdN6ANoCEdAmc8zUutfX3V9lChoBkdAXWUJQcghbGgHTegDaAhHQJnQXh5xBE91fZQoaAZHQGHQ1AAyVOdoB03oA2gIR0CZ1ZNvOyE+dX2UKGgGR0Biy7pqynk1aAdN6ANoCEdAmdqeQQtjC3V9lChoBkdAZsrSZSeiBWgHTegDaAhHQJna/7oB7u51fZQoaAZHQGKk0xubZvloB03oA2gIR0CZ3hFLnLaFdX2UKGgGR0BmXNpKzzEraAdN6ANoCEdAmd6WcnVoYnV9lChoBkdAZx4EUTL4e2gHTegDaAhHQJnk0lme18d1fZQoaAZHQGKCqS5iExtoB03oA2gIR0CZ6JB+nZTRdX2UKGgGR0BejW2b5M11aAdN6ANoCEdAmewqkhzNlnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-lunarlander-v2-smartpants/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62bff8d7f25b602d6eb524967d57b76b27e7c22e8137bb433ec0bf152518d6e8
|
3 |
+
size 87929
|
ppo-lunarlander-v2-smartpants/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:867fbc09d33abd44dadb90421b3447d71dd7c546e9baccdd9cbe891d8015b5e9
|
3 |
+
size 43329
|
ppo-lunarlander-v2-smartpants/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-lunarlander-v2-smartpants/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.06020939999996, "std_reward": 19.588351437623995, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-25T14:51:17.531084"}
|