File size: 1,544 Bytes
fa4d4d6 be5f3c7 fa4d4d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: google/gemma-2b-it
tags:
- text-to-lora
- sakana-ai
- peft
- lora
- python
- code-generation
- programming
library_name: peft
---
# gemma-2b-python-expert-lora(Text to Model)
This LoRA adapter specializes the base model for expert-level Python programming. Created using Sakana AI's Text-to-LoRA technology.
## Model Details
- **Base Model**: `google/gemma-2b-it`
- **LoRA Rank**: 16
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Task**: Python Code Generation
## Usage
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load base model and tokenizer
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
# Load LoRA adapter
model = PeftModel.from_pretrained(model, "rohitnagareddy/gemma-2b-python-expert-lora")
# Generate Python code
prompt = "Write a Python function to implement binary search:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Capabilities
- Clean, documented Python code
- Type hints and error handling
- PEP 8 compliance
- Algorithm implementation
- Web development
- Data processing
- Testing and debugging
## Citation
```bibtex
@misc{sakana2024texttolora,
title={Text-to-LoRA},
author={Sakana AI},
year={2024},
url={https://github.com/SakanaAI/text-to-lora}
}
```
|