Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +51 -0
- README.md +51 -0
- config.json +49 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: other
|
4 |
+
tags:
|
5 |
+
- sentiment-analysis
|
6 |
+
- fine-tuned
|
7 |
+
- sentiment-classification
|
8 |
+
- transformers
|
9 |
+
model_name: Fine-Tuned Sentiment Model
|
10 |
+
model_type: Roberta
|
11 |
+
datasets:
|
12 |
+
- custom-dataset
|
13 |
+
metrics:
|
14 |
+
- micro precision and recall
|
15 |
+
- macro precision and recall
|
16 |
+
---
|
17 |
+
|
18 |
+
# Fine-Tuned Sentiment Model
|
19 |
+
This model is fine-tuned for Sentiment Analysis task, the model classifies a customer ticket into 5-categories of sentiments, namely:
|
20 |
+
- "Strong Negative"
|
21 |
+
- "Mild Negative"
|
22 |
+
- "Neutral"
|
23 |
+
- "Mild Positive"
|
24 |
+
- "Strong Positive"
|
25 |
+
|
26 |
+
*Point To Note*: The Customers are from these specific industries only:
|
27 |
+
- Food
|
28 |
+
- Cars
|
29 |
+
- Pet Food
|
30 |
+
- Furniture
|
31 |
+
- Beauty
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
- **Model Architecture**: This fine-tuned model was built on a pre-trained model, "IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment"
|
35 |
+
- **Training Dataset**: The Dataset was generated using the model, "meta-llama/Llama-3.2-1B-Instruct"
|
36 |
+
|
37 |
+
## Example Usage-
|
38 |
+
To use this model for Sentiment Analysis:
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
42 |
+
import torch
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("your_username/fine_tuned_sentiment_model_rt")
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained("your_username/fine_tuned_sentiment_model_rt")
|
46 |
+
|
47 |
+
# Example input
|
48 |
+
inputs = tokenizer("The food was a bit bland, but the portion sizes were generous. I was looking forward to trying it, but it didn't quite live up to my expectations.", return_tensors='pt')
|
49 |
+
outputs = model(**inputs)
|
50 |
+
predicted_class = torch.argmax(outputs.logits, dim = 1).item()
|
51 |
+
print("Predicted Sentiment:", predicted_class)
|
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: other
|
4 |
+
tags:
|
5 |
+
- sentiment-analysis
|
6 |
+
- fine-tuned
|
7 |
+
- sentiment-classification
|
8 |
+
- transformers
|
9 |
+
model_name: Fine-Tuned Sentiment Model
|
10 |
+
model_type: Roberta
|
11 |
+
datasets:
|
12 |
+
- custom-dataset
|
13 |
+
metrics:
|
14 |
+
- micro precision and recall
|
15 |
+
- macro precision and recall
|
16 |
+
---
|
17 |
+
|
18 |
+
# Fine-Tuned Sentiment Model
|
19 |
+
This model is fine-tuned for Sentiment Analysis task, the model classifies a customer ticket into 5-categories of sentiments, namely:
|
20 |
+
- "Strong Negative"
|
21 |
+
- "Mild Negative"
|
22 |
+
- "Neutral"
|
23 |
+
- "Mild Positive"
|
24 |
+
- "Strong Positive"
|
25 |
+
|
26 |
+
*Point To Note*: The Customers are from these specific industries only:
|
27 |
+
- Food
|
28 |
+
- Cars
|
29 |
+
- Pet Food
|
30 |
+
- Furniture
|
31 |
+
- Beauty
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
- **Model Architecture**: This fine-tuned model was built on a pre-trained model, "IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment"
|
35 |
+
- **Training Dataset**: The Dataset was generated using the model, "meta-llama/Llama-3.2-1B-Instruct"
|
36 |
+
|
37 |
+
## Example Usage-
|
38 |
+
To use this model for Sentiment Analysis:
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
42 |
+
import torch
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("your_username/fine_tuned_sentiment_model_rt")
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained("your_username/fine_tuned_sentiment_model_rt")
|
46 |
+
|
47 |
+
# Example input
|
48 |
+
inputs = tokenizer("The food was a bit bland, but the portion sizes were generous. I was looking forward to trying it, but it didn't quite live up to my expectations.", return_tensors='pt')
|
49 |
+
outputs = model(**inputs)
|
50 |
+
predicted_class = torch.argmax(outputs.logits, dim = 1).item()
|
51 |
+
print("Predicted Sentiment:", predicted_class)
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "Strong Negative",
|
16 |
+
"1": "Mild Negative",
|
17 |
+
"2": "Neutral",
|
18 |
+
"3": "Mild Positive",
|
19 |
+
"4": "Strong Positive"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"label2id": {
|
24 |
+
"Mild Negative": 1,
|
25 |
+
"Mild Positive": 3,
|
26 |
+
"Neutral": 2,
|
27 |
+
"Strong Negative": 0,
|
28 |
+
"Strong Positive": 4
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-12,
|
31 |
+
"max_position_embeddings": 512,
|
32 |
+
"model_type": "bert",
|
33 |
+
"num_attention_heads": 12,
|
34 |
+
"num_hidden_layers": 12,
|
35 |
+
"output_past": true,
|
36 |
+
"pad_token_id": 1,
|
37 |
+
"pooler_fc_size": 768,
|
38 |
+
"pooler_num_attention_heads": 12,
|
39 |
+
"pooler_num_fc_layers": 3,
|
40 |
+
"pooler_size_per_head": 128,
|
41 |
+
"pooler_type": "first_token_transform",
|
42 |
+
"position_embedding_type": "absolute",
|
43 |
+
"problem_type": "single_label_classification",
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.46.2",
|
46 |
+
"type_vocab_size": 2,
|
47 |
+
"use_cache": true,
|
48 |
+
"vocab_size": 21128
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:005b180c3b177101936e14cf8aa5ff4eebf5684da7e672cbf4b145644de6da1b
|
3 |
+
size 409109468
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|