rojagtap commited on
Commit
1a85a1e
1 Parent(s): 63eb970

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 244.67 +/- 51.75
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 284.68 +/- 7.64
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94222ca0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94222ca170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94222ca200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94222ca290>", "_build": "<function ActorCriticPolicy._build at 0x7f94222ca320>", "forward": "<function ActorCriticPolicy.forward at 0x7f94222ca3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94222ca440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94222ca4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94222ca560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94222ca5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94222ca680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94222ca710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94222bf080>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689009456403688988, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB35j3Xjnq7TmYVvk04Jb4Z0468Ypz9PQAAgD8AAAAAsx+zvWqgAD8LI169rbjmvQY3kb1vM6W8AAAAAAAAAACtCBc+8AmtPpPHAL5FMz++fJLFO1sivzwAAAAAAAAAAJoSlDyO3YQ99lzcPUTHY75zMUE92JIXPQAAAAAAAAAAoLcevoS+iz8t2hu9zr/Kvo0P3L3VVJm7AAAAAAAAAAAApZS8J0VcP0R1D7xvAZm+6CprPKp6hz0AAAAAAAAAALPOlL2kUnI8CKtSPTF2S75Z1ha8FfxjvAAAAAAAAAAAs8FHPXG2EbvfBp+8JJeUO5g8irwyZ5Q8AACAPwAAgD+aP5k8LjeUPXDEqL2pOR2+3T2PvbOnyb0AAAAAAAAAADMI6T0OXpw/UXgfPwuECL9iTwM9RSH+PQAAAAAAAAAAOjWVPkBXMD/X5gG+o/WRvr+pmz4TXSO+AAAAAAAAAAAA3ky8w4E1vFr7JjyiXV08bU+fPRoWOb0AAIA/AACAP82SyjyF+/q5j/oAtAp/KC+nLIW7n9GwMwAAgD8AAIA/ZmmnPQ8iYrywbJG94aUhvgGNtb3SOCm/AACAPwAAAAAziCo+wCaKPyJVtD621/2+EnRmPlQSwD0AAAAAAAAAAM0IIL5kd8U+Wr8GPktKmL5RPdc8tbRpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEu9JxNqQBCMAWyUS9qMAXSUR0ChxbtdZ7ojdX2UKGgGR0BtZFEJBw+/aAdNSwFoCEdAocaWPDHfdnV9lChoBkdAcTvwlByCF2gHTTgBaAhHQKHGlnuiN851fZQoaAZHQG60UEHMUypoB00lAWgIR0Chx1kXcgyNdX2UKGgGR0BwsgNgBtDVaAdNQAFoCEdAocdu7voeP3V9lChoBkdAbtaV8CxNZmgHTSwBaAhHQKHHjSUkfLd1fZQoaAZHQHJE2R7qptJoB0vzaAhHQKHHjRIBikR1fZQoaAZHQHHFMLfDUExoB01hAWgIR0Chx5M6JZW8dX2UKGgGR0BzO3k0aZQYaAdNNwFoCEdAocfhFG5MDnV9lChoBkdAcTzeGO+7DmgHTV4BaAhHQKHIAbedkJ91fZQoaAZHQHHw0yxiXppoB02EAWgIR0ChyGlVT72tdX2UKGgGR0ByIqTyJ9ApaAdNoQFoCEdAoci8ySFGonV9lChoBkdAcIz74zrNW2gHTS8BaAhHQKHJFBKL8791fZQoaAZHQG/nWWpqASZoB00fAWgIR0ChyRKmj0tidX2UKGgGR0BxrwvqTr3TaAdNVAFoCEdAockgh4dIXnV9lChoBkdAbmjCPZIxxmgHTSsBaAhHQKHKnT4tYjl1fZQoaAZHQHBK89B8hLZoB00eAWgIR0Chy1mC7K7qdX2UKGgGR0BwI3S/j81oaAdNLgFoCEdAocus85jpcHV9lChoBkdAccsLg4wRG2gHTQsBaAhHQKHL1XzUZvV1fZQoaAZHQG94FMqSX+loB00UAWgIR0ChzAHnuAqedX2UKGgGR0BxUGE+PikwaAdNIgFoCEdAocwWEbo8p3V9lChoBkdAcPKJMg2ZRmgHTT0BaAhHQKHMrwEQoTh1fZQoaAZHQG+pM8ox59poB005AWgIR0ChzRvNFBppdX2UKGgGR0BwGkIF/x2CaAdNaAFoCEdAoc2qpaRp13V9lChoBkdAbeJHVf/m1mgHTVABaAhHQKHNs8Tzund1fZQoaAZHQG9VeWOZLIxoB006AWgIR0Chzcwj2SMcdX2UKGgGR0Bx8Q6xPfsNaAdNEAFoCEdAoc3kX7+DOHV9lChoBkdAcJcYE4ecQWgHTeMBaAhHQKHOR+qBErp1fZQoaAZHQG4nYDklu3toB003AWgIR0ChzowBgeA/dX2UKGgGR0Bwrn9JjDsMaAdNQgFoCEdAoc6qSxJNCnV9lChoBkdAcMUPjn3cpWgHTccBaAhHQKHQiAbQ1Jl1fZQoaAZHQHMaSMo+fRNoB00eAWgIR0Ch0TXuE25ydX2UKGgGR0BwVypgkTpQaAdNNwFoCEdAodFLBXS0B3V9lChoBkdARuwC+10DEGgHS9VoCEdAodFgYxcmjXV9lChoBkdAb/axnnMdLmgHTUsBaAhHQKHRYLjPv8Z1fZQoaAZHQG09CyIHkcVoB01GAWgIR0Ch0bj9fkWAdX2UKGgGR0Bw5yG0u14PaAdNSAFoCEdAodHvJA+pwXV9lChoBkdAcGQvitJWemgHTTMBaAhHQKHSNCXyAhB1fZQoaAZHQHBGYllbu+hoB00fAWgIR0Ch0jhFmWdFdX2UKGgGR0Bvc9SqEOAiaAdNqQFoCEdAodJq619fC3V9lChoBkdAbyG4//vOQmgHTSABaAhHQKHSsgsbvPV1fZQoaAZHQHBtJokAxSJoB00lAWgIR0Ch0tbzkIX1dX2UKGgGR0BwrixB3RoiaAdNGQFoCEdAodMXIEKVp3V9lChoBkdAcO51IAfdRGgHTXwBaAhHQKHUjNPgvUV1fZQoaAZHQHGsVCTlkpZoB02dAWgIR0Ch1oN2C/XYdX2UKGgGR0BxsK2UjcEeaAdNLQFoCEdAodagljVhC3V9lChoBkdAcyQgmZ3LWGgHTQUBaAhHQKHWpumaYu11fZQoaAZHQHE8nIyTINpoB00vAWgIR0Ch16LdnCfpdX2UKGgGR0BwYa3mV7hOaAdNIwFoCEdAodfvQQcxTXV9lChoBkdAcVBRhc7hemgHTR4BaAhHQKHYfJaq0dB1fZQoaAZHQHBqzeoDPnloB00jAWgIR0Ch2KjxCpm3dX2UKGgGR0By5RJtix3WaAdNZwFoCEdAodkPrrxAjnV9lChoBkdAb2j/cWTHKmgHTS8BaAhHQKHZSuTRplB1fZQoaAZHQHH36TB68g9oB01yAWgIR0Ch4oSQo1DTdX2UKGgGR0BvDQrYoRZmaAdNZgFoCEdAoeLPoV2zOXV9lChoBkdAcZjdt2s7uGgHTT4BaAhHQKHi6+IuXeF1fZQoaAZHQHM1zkhib2FoB01lAWgIR0Ch45kx7AtWdX2UKGgGR0Bx4fabnX/YaAdNbQFoCEdAoeQA55qubXV9lChoBkdAbYh78ejmCGgHTTEBaAhHQKHkMzHjp9t1fZQoaAZHQG+bKdpZfUpoB00hAWgIR0Ch5RxUFSsKdX2UKGgGR0BxetsBQvYfaAdNNQFoCEdAoeWHlMh5gXV9lChoBkdAcOgWGh24eGgHTRIBaAhHQKHlljWkJrt1fZQoaAZHQHEvJIDoyKxoB00cAWgIR0Ch5nEjX4CZdX2UKGgGR0BwS0eZG8VYaAdNCgFoCEdAoeaO/N7jUHV9lChoBkdAcFwdz4k/r2gHTUABaAhHQKHmoHymQ8x1fZQoaAZHQG3vFjd56dFoB00SAWgIR0Ch5tsBhhH9dX2UKGgGR0ByS70jC53DaAdNoAFoCEdAoedod2gWanV9lChoBkdAcC19q1w5vWgHTUoBaAhHQKHneZGax5d1fZQoaAZHQHIuygTRIBloB01wAWgIR0Ch5715a/yodX2UKGgGR0BxBuyv9tMxaAdNQAFoCEdAoefmMMqjJ3V9lChoBkdAbo9+1jRUm2gHTRcBaAhHQKHoypR4yGl1fZQoaAZHQHE0HPAwfyRoB010AWgIR0Ch6cGcWj46dX2UKGgGR0Bu2ZCa7VawaAdNrQFoCEdAoensP8Q7LnV9lChoBkdAbrAO0b961WgHTSQBaAhHQKHqKR9PUKB1fZQoaAZHQG8/1qFh5PdoB016AWgIR0Ch6mHSnccmdX2UKGgGR0Bkh//aQFLWaAdN6ANoCEdAoepnL5h0AHV9lChoBkdAcbzqRlpXZGgHTUkBaAhHQKHrO83dbgV1fZQoaAZHQHIOl8LKFIxoB00fAWgIR0Ch64E1EVnFdX2UKGgGR0BuHJD3M6ikaAdNIwFoCEdAoeuh1s+FDnV9lChoBkdAcVEuJDVpbmgHTS0BaAhHQKHtLtF8XvZ1fZQoaAZHQHGRoT0xubZoB01tAWgIR0Ch7WPiDM/ydX2UKGgGR0BwnUSbpeNUaAdNVgFoCEdAoe2pKODJ2nV9lChoBkdAcb0rylN1yWgHTckBaAhHQKHtymw7kn11fZQoaAZHQG5OuWjXWe9oB02dAWgIR0Ch7dl+d9UkdX2UKGgGR0Bvs05MlC1JaAdNHwFoCEdAoe99fLLZBnV9lChoBkdAcSu6fJ3gUGgHTTwBaAhHQKHv0Y5T6zp1fZQoaAZHQG8KV1fVqetoB018AWgIR0Ch7+kGZ/kOdX2UKGgGR0ByHTF85S3taAdNvwFoCEdAofAdGsmv4nV9lChoBkdAcivmhM8HOmgHTWIBaAhHQKHwZ6Rhc7h1fZQoaAZHQHEvnmJWNm1oB037AWgIR0Ch8KbVJ+UhdX2UKGgGR0BxENz+3pfQaAdNUQFoCEdAofC0vIwM6XV9lChoBkdAcP36ab4Ju2gHTVYBaAhHQKHww56t1ZF1fZQoaAZHQHBJCKFZgXxoB006AWgIR0Ch8SQL3K0VdX2UKGgGR0ByEgZvUBn0aAdNMwFoCEdAofFM5MlC1XV9lChoBkdAcRhKp1ie/mgHTUABaAhHQKHxrTgl4Tt1fZQoaAZHQHH4yBoVVPxoB00eAWgIR0Ch8xjtXxOMdX2UKGgGR0Bxe+8pTdcjaAdNLgFoCEdAofMlCRfWtnV9lChoBkdAcNosIE8q4GgHTUEBaAhHQKHzV99+gDl1fZQoaAZHQG093DWK/EhoB01CAWgIR0Ch9AE2Hck/dX2UKGgGR0BxpVvES/TLaAdNUgFoCEdAofRu7+T/yXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13a4ce83a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13a4ce8430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13a4ce84c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13a4ce8550>", "_build": "<function ActorCriticPolicy._build at 0x7f13a4ce85e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f13a4ce8670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13a4ce8700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13a4ce8790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13a4ce8820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13a4ce88b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13a4ce8940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13a4ce89d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13a4ce4e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689050504332737274, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJrvFj446fq7OT6EPHe8zbqT01C947asuwAAgD8AAIA/Zmc8vZUaqT8oreS+MO0Ev9o0Q7prWmC9AAAAAAAAAABN97A9XGNauknPLDZ9mcQ06Cl6uLWb9LYAAIA/AACAP2YfiD3T1ns/xfVnPet1RL84Xj89A+nnvAAAAAAAAAAAmkX7O4Vz/rmLAaC7URWcuSkMdLpzr8E6AAAAAAAAgD9Anwi+H13xuz5ihb0peB68PedPPdMlBT0AAIA/AACAP5o9OzymQC0/BVIjPdBJY79FkBE9y0ZRPQAAAAAAAAAAALHPPHNERz8MThw9hjhhv3T3az0cb0A8AAAAAAAAAAA6bCM+tv59vF4yUjv5I965gdzcvd5sxroAAIA/AACAP2BXHj5Dq0C80rZFuufPkjhezLK9lnyGOQAAgD8AAIA/WunIPcOpNLp+47w7eX/YNE3pBrpu7MkzAAAAAAAAgD/NsFc9CmdGuQW/gbgzSscxy9uKuzd1mzcAAIA/AACAP016Uj0URKu6xpkKvtNbkDtfH7e5qtCRPAAAgD8AAIA/gBx1vuIkGz/4XXi7Mf4Rv+5nmb71Sxk+AAAAAAAAAABa+ty99vR9uthbRTvdYZU54Bm+uuhHKToAAIA/AAAAAACgnzx8NoU+F2GivRy5FL/DOoA7agF3vQAAAAAAAAAAjbEZPo90L7yqp7w7jwg2uryYmb1WGxa7AACAPwAAgD86SDK+aNiiPkK/zLvh+fS+g9dAvmjegj0AAAAAAAAAAGa6bbxI65i6zSj+PHA/JbYnQq+6zQwatQAAgD8AAIA/syIrvgPjV7xszA87gU8qOTkBwz1pOju6AACAPwAAgD+Aa6W9hQPVuUpXzz2JTii5wU2TuR42JrgAAAAAAACAP808K7spTVM93hTOPS+3gr6PP6M8riM8PQAAAAAAAAAAs1aEvja3nD9fshu/ie0HvxzNtb7G7Iu+AAAAAAAAAADa77C9FKTSunGugT1j3hI9FFb3u+1d+z0AAIA/AACAP40SuD1cUy66fX3pur9VVbYNQj46zSoIOgAAAAAAAIA/UzR3PkvkCz/1CMG9y7Mpv+4pOj72rd29AAAAAAAAAACasaC70mv3u05Vhjy8LKQ8w0VSPZayiL0AAIA/AACAPw3Esb32lCy6i8Rfuq9m4baF4PW4BnSIOAAAgD8AAAAAALqaPEPRBbxhNYm9CbttvpJmAzvDy02/AACAPwAAgD+aOM489vRZumUSxLo1RP64vSQoOq7H7TkAAIA/AACAP5pJKb4hO4u8PpxCOg0nnThwDfI9/aiGuQAAgD8AAIA/MyuhPfZ4CbrIPPe3srEBsx+YLzt4/BA3AACAPwAAgD96SYQ+FU3MPgH8vb6BKha//vsNPUL7+r0AAAAAAAAAAAAfsT3pPxw9QE7kveCpZL5aXEm9YfC/vQAAAAAAAAAAuvwGvottLD+uu9m98vI8v0L5Ib4wlfM8AAAAAAAAAADzCDG+gaWZvEaxXbxwvvi6mKMMPqfexDsAAIA/AACAP8Cflr0f3bO5e88dPQwfM7H0Uo07StrYswAAgD8AAIA/QBDQvRSO1rieXbi5W4s8tYACmTudOt04AACAPwAAAABmhm09w8F/uhhOXr0g91E8B11GO4YlNz0AAIA/AACAPzPtJL2eqcw91tbMvAbhVL6RJIK9Wx1+PQAAAAAAAAAAKgyFvvA+hT41yaM+WgcLv1cu9zxaqvI9AAAAAAAAAACad8M8XKNruhomWTNN+asvJtNXuu08yrMAAIA/AACAPzNb+rsbpYW8xdVOPd6Ccb0M+5k8arVfPQAAgD8AAIA/s+BsPSuolj+cGhQ+wEIuv/42mD36cLI8AAAAAAAAAAAAhKa7tBZLP/Wt3rys9Xe/PC0+PKKlfT0AAAAAAAAAAMClM74PlFy8Rl0tu0Y/SLn9e8Q91ftcOgAAgD8AAIA/TRQXvWynmLsT6/c9DoaUvNWFkDst3+q9AACAPwAAgD8tcig+tuQuvI0hCbt6ZA05hd2cvVfULzoAAIA/AACAPxozdD24HuW3TbHTvFwjdrIXpqa70f9HswAAgD8AAIA/mlkXOrrRsz/yv7Q77KzjvVdaELvFOi48AAAAAAAAAAAAsA87eLq9P4FAsLpbDjK+0dnzu3nSFz0AAAAAAAAAAJqZubrsiZm50FlducIEq7RvwpA78vOBOAAAgD8AAAAAQIoJPtpUVz+Rfkw+e80hv8iRYT4RKUw5AAAAAAAAAAAzu+I9RqahPtKWsb0Rfgq/yVVbPSquA74AAAAAAAAAAAa6fT5d/AA/HgCGvWAjFr8H57o+G7YCvgAAAAAAAAAATaPzvZ59Qz+uAdi91P4dv4VHJ76fPpS8AAAAAAAAAACNUAK+hCOKP9E/O75mqDa/v6ErvoUPKL0AAAAAAAAAAE2/H71xulQ8+rRUPnNRKb4lQyY+onqVvgAAAAAAAIA/GlhFvcPBXrrtBSY57a2PNJIip7hhf0C4AACAPwAAgD/AVhg+UUu1PUtPUL7672a+HYlvPO3ear0AAAAAAAAAAMaFHr6PayC81xICu08h3rh4JYM9PhYkOgAAgD8AAIA/8zMXPgMrarx7yRQ8CQ2SPIwgkT3dKGu9AACAPwAAgD+NlhY+nEsLvB5+4bpyArY480tfvQ7IEToAAIA/AACAP83wGT6px028+ugWO+4kSbn3aMC9DklOugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEeD+BH09SMAWyUS72MAXSUR0Cuc+i/fwZwdX2UKGgGR0Bz3C+QEIPcaAdLv2gIR0CudCL56+nJdX2UKGgGR0BxLKOjqOcUaAdLqWgIR0CudCEzO5avdX2UKGgGR0Bw8RLUTcqOaAdLn2gIR0CudGp2MbWFdX2UKGgGR0ByGTgCOmzjaAdL12gIR0CudIcfFJg9dX2UKGgGR0Bx6f9XLeQ/aAdLnWgIR0CudIY77sOYdX2UKGgGR0BvfZOafBepaAdLl2gIR0CudMaVdHDrdX2UKGgGR0BzQpJOFg2IaAdNAAFoCEdArnUt6ol2NnV9lChoBkdAcM73gk1MumgHS8RoCEdArnU+EIw/PnV9lChoBkdAcXVO/+Kjz2gHS6xoCEdArnVtbgTAWXV9lChoBkdAcSnSR8twrGgHTRkBaAhHQK51ebI91U51fZQoaAZHQHCYMxj8UEhoB0vWaAhHQK51r1RLsa91fZQoaAZHQHKof6wdKdxoB0vZaAhHQK51wFyq+8J1fZQoaAZHQHLb8IqslsxoB0uxaAhHQK517xZMcp91fZQoaAZHQHI/QmE4//xoB0vMaAhHQK5162606YF1fZQoaAZHQHEfS+Yc/+toB0vIaAhHQK516gJ1JUZ1fZQoaAZHQGVv3Xyy2QZoB03oA2gIR0Cudj+HaewtdX2UKGgGR0BzQh96Tnq3aAdL+mgIR0Cudoo+wC8wdX2UKGgGR0BwJyAG0NSZaAdLomgIR0Cuds36hxo7dX2UKGgGR0Bx85ymygPFaAdLyGgIR0CudwRR2r4ndX2UKGgGR0BwtG7kGRmsaAdLnGgIR0CudyoP07KadX2UKGgGR0BzBqzgMtsfaAdL2mgIR0Cud1SX2M86dX2UKGgGR0BwJhpGnXNDaAdLyGgIR0Cud6r3Cbc5dX2UKGgGR0BxzJV+7UXpaAdL+WgIR0CueCKs2eg+dX2UKGgGR0BwdYOiFj/daAdLoWgIR0CueFKU/wAmdX2UKGgGR0Bw42w4bS7YaAdLymgIR0CueJdfkWAPdX2UKGgGR0ByH5XzUZvUaAdLi2gIR0CueLAfU4JedX2UKGgGR0ByReCI1tO3aAdLjmgIR0CueYX1rZandX2UKGgGR0Byl+WfK6nSaAdL1GgIR0CuekQpF1B/dX2UKGgGR0Bxzw30f5k9aAdLx2gIR0CuekM10knkdX2UKGgGR0BxwIsrd30PaAdL4WgIR0CuekKneiztdX2UKGgGR0BwiQFNcnmaaAdLpWgIR0CuelIMKCxvdX2UKGgGR0By9oILPUrkaAdLr2gIR0CuelCMYMvzdX2UKGgGR0BxjjkJa7mMaAdL/mgIR0CuemKEvkBCdX2UKGgGR0BvC3c32mHhaAdLsWgIR0Cuen9mg8KYdX2UKGgGR0BnORa/yoXLaAdN6ANoCEdArnp5+jM3ZXV9lChoBkdAco7OtGNJe2gHS9doCEdArnqXsAvL5nV9lChoBkdAcNVBu4wyqWgHS51oCEdArnsH9UCJXXV9lChoBkdAMgFoL5RCQmgHS2hoCEdArnv2V7hNunV9lChoBkdAcUupX6qKg2gHS6BoCEdArnwnY6GQCHV9lChoBkdAYH8tITXarWgHTegDaAhHQK58J6UJOWV1fZQoaAZHQHFCvmYBvJloB0unaAhHQK58M4vvjOt1fZQoaAZHQHAKHWnTAnFoB0ubaAhHQK58MZDzAet1fZQoaAZHQHHhXrhR64VoB0vnaAhHQK58br2QGOd1fZQoaAZHQGTglV1fVqhoB03oA2gIR0CufJkRSP2gdX2UKGgGR0ByMwpDu0CzaAdLvmgIR0CufLMhX8wYdX2UKGgGR0BylNIMBp6AaAdLtGgIR0CufS7pNbkfdX2UKGgGR0B0kYZhrnDBaAdLx2gIR0CufSqzAvcrdX2UKGgGR0ByX93s5XEJaAdL4mgIR0CufUcMd92HdX2UKGgGR0BxQWLYPGyYaAdLumgIR0CufWCNS619dX2UKGgGR0ByXaAlOXVtaAdLvmgIR0CufbI99tuUdX2UKGgGR0Bzm2pYLb5/aAdL+2gIR0CufbzaK1ohdX2UKGgGR0Bx+xDE3sHCaAdLsGgIR0CufhuHvc8DdX2UKGgGR0Bw74lZ5iVjaAdLv2gIR0CufnByKekIdX2UKGgGR0B0EaoJiRW+aAdLtGgIR0CufqU+TvAodX2UKGgGR0BxquYqoZQ6aAdLxmgIR0CufqMn7YTTdX2UKGgGR0Bv/aufVZs9aAdLvWgIR0CufuUuL740dX2UKGgGR0ByrUgZCOWCaAdLpmgIR0CufvcawUxmdX2UKGgGR0Bx7d6QeV9naAdLyGgIR0Cufx+DWbw0dX2UKGgGR0ByefRArxy5aAdL0WgIR0Cufx1+7UXpdX2UKGgGR0ByysLUkOZtaAdLyWgIR0Cufypo0ygxdX2UKGgGR0ByoSRdQfp2aAdLz2gIR0Cuf9CV0Lc9dX2UKGgGR0ByQUSGrS3LaAdLuGgIR0Cuf93H7xd6dX2UKGgGR0ByWZXxOLzgaAdLxGgIR0CugA0sOG0vdX2UKGgGR0BxKRjvuw5eaAdLwWgIR0CugFhRZU1idX2UKGgGR0Bwf76uW8h+aAdLtGgIR0CugIWll9SddX2UKGgGR0Bu/Lbah6BzaAdLsWgIR0CugLRFqi48dX2UKGgGR0ByWxK7I1cdaAdL3GgIR0CugSNx+8XfdX2UKGgGR0BwEQI5YHPeaAdLsWgIR0CugTJVKf4AdX2UKGgGR0BxQDZpSJj2aAdLo2gIR0CugVwpvxYrdX2UKGgGR0BxCaXMQmNSaAdLo2gIR0CugXSsKb8WdX2UKGgGR0Bz/paFEiMYaAdL4mgIR0CugfB06o2odX2UKGgGR0BywZyEL6UJaAdLz2gIR0Cugir8JlasdX2UKGgGR0BzEDH7xd6caAdL62gIR0CugirBTGYKdX2UKGgGR0BhJ10xM36zaAdN6ANoCEdAroIqlUIcBHV9lChoBkdAc2AFA3T/hmgHS/RoCEdAroJfpIMBqHV9lChoBkdAcUpR/ViF02gHS8NoCEdAroKf3evZAnV9lChoBkdAcABQ5myxA2gHS55oCEdAroK+cBltj3V9lChoBkdAcOLd07r9l2gHS7NoCEdAroMdfiPyTnV9lChoBkdAb5mRGtp22WgHS6loCEdAroNEz9CNTHV9lChoBkdAXTnSOR1YAGgHTegDaAhHQK6DfMIu5Bl1fZQoaAZHQHCtb5dnkDJoB0uvaAhHQK6Dlq1w5vN1fZQoaAZHQHCYFdxAB1doB0uZaAhHQK6ECJLuhK11fZQoaAZHQHIMo1UEPlNoB0u5aAhHQK6EG1NQCS11fZQoaAZHQHBpMfvF3pxoB0u9aAhHQK6EhTefqX51fZQoaAZHQHFOUrCm/FloB0uOaAhHQK6EoSt/4It1fZQoaAZHQHI4ReXzDoBoB0uJaAhHQK6E7Wsijcp1fZQoaAZHQG6fTB68g6loB0utaAhHQK6FRvGZNPB1fZQoaAZHQHEx8zyjHn5oB0u4aAhHQK6F4u01IiF1fZQoaAZHQG4fMh5gPVdoB0u3aAhHQK6F32MbWEt1fZQoaAZHQHFwsMRYigVoB0vUaAhHQK6F3a2WpqB1fZQoaAZHQHDeQ6p5u65oB0u8aAhHQK6GJKTSssB1fZQoaAZHQHMHHrIHTqloB00XAWgIR0CuhlCaAnUldX2UKGgGR0BwKsnH/95yaAdLlmgIR0CuhmPtUn5SdX2UKGgGR0By8TOzIFNdaAdL12gIR0CuhnuhkAggdX2UKGgGR0Bye+Tr3TNMaAdL52gIR0CuhrfRu0kXdX2UKGgGR0Bx3aVpsXSCaAdLmGgIR0CuhrV3dKukdX2UKGgGR0Bw1XR0EHMVaAdLwWgIR0Cuh2qtPpIMdX2UKGgGR0Bis9OTJQtSaAdN6ANoCEdArog3WjGkvnV9lChoBkdAcmv779AHFGgHS89oCEdArohtwFTvRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:907e784d679d6113ffe7846d9c895b33ac02eeed7f711813648c4bbba1583584
3
- size 146755
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2435bd539b5072d48de4641fd3c96dbfc8a65423f5632c781a7798374e408dd
3
+ size 148747
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 2.0.0a5
 
1
+ 2.0.0
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94222ca0e0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94222ca170>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94222ca200>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94222ca290>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f94222ca320>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f94222ca3b0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94222ca440>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94222ca4d0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f94222ca560>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94222ca5f0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94222ca680>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94222ca710>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f94222bf080>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1689009456403688988,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB35j3Xjnq7TmYVvk04Jb4Z0468Ypz9PQAAgD8AAAAAsx+zvWqgAD8LI169rbjmvQY3kb1vM6W8AAAAAAAAAACtCBc+8AmtPpPHAL5FMz++fJLFO1sivzwAAAAAAAAAAJoSlDyO3YQ99lzcPUTHY75zMUE92JIXPQAAAAAAAAAAoLcevoS+iz8t2hu9zr/Kvo0P3L3VVJm7AAAAAAAAAAAApZS8J0VcP0R1D7xvAZm+6CprPKp6hz0AAAAAAAAAALPOlL2kUnI8CKtSPTF2S75Z1ha8FfxjvAAAAAAAAAAAs8FHPXG2EbvfBp+8JJeUO5g8irwyZ5Q8AACAPwAAgD+aP5k8LjeUPXDEqL2pOR2+3T2PvbOnyb0AAAAAAAAAADMI6T0OXpw/UXgfPwuECL9iTwM9RSH+PQAAAAAAAAAAOjWVPkBXMD/X5gG+o/WRvr+pmz4TXSO+AAAAAAAAAAAA3ky8w4E1vFr7JjyiXV08bU+fPRoWOb0AAIA/AACAP82SyjyF+/q5j/oAtAp/KC+nLIW7n9GwMwAAgD8AAIA/ZmmnPQ8iYrywbJG94aUhvgGNtb3SOCm/AACAPwAAAAAziCo+wCaKPyJVtD621/2+EnRmPlQSwD0AAAAAAAAAAM0IIL5kd8U+Wr8GPktKmL5RPdc8tbRpvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEu9JxNqQBCMAWyUS9qMAXSUR0ChxbtdZ7ojdX2UKGgGR0BtZFEJBw+/aAdNSwFoCEdAocaWPDHfdnV9lChoBkdAcTvwlByCF2gHTTgBaAhHQKHGlnuiN851fZQoaAZHQG60UEHMUypoB00lAWgIR0Chx1kXcgyNdX2UKGgGR0BwsgNgBtDVaAdNQAFoCEdAocdu7voeP3V9lChoBkdAbtaV8CxNZmgHTSwBaAhHQKHHjSUkfLd1fZQoaAZHQHJE2R7qptJoB0vzaAhHQKHHjRIBikR1fZQoaAZHQHHFMLfDUExoB01hAWgIR0Chx5M6JZW8dX2UKGgGR0BzO3k0aZQYaAdNNwFoCEdAocfhFG5MDnV9lChoBkdAcTzeGO+7DmgHTV4BaAhHQKHIAbedkJ91fZQoaAZHQHHw0yxiXppoB02EAWgIR0ChyGlVT72tdX2UKGgGR0ByIqTyJ9ApaAdNoQFoCEdAoci8ySFGonV9lChoBkdAcIz74zrNW2gHTS8BaAhHQKHJFBKL8791fZQoaAZHQG/nWWpqASZoB00fAWgIR0ChyRKmj0tidX2UKGgGR0BxrwvqTr3TaAdNVAFoCEdAockgh4dIXnV9lChoBkdAbmjCPZIxxmgHTSsBaAhHQKHKnT4tYjl1fZQoaAZHQHBK89B8hLZoB00eAWgIR0Chy1mC7K7qdX2UKGgGR0BwI3S/j81oaAdNLgFoCEdAocus85jpcHV9lChoBkdAccsLg4wRG2gHTQsBaAhHQKHL1XzUZvV1fZQoaAZHQG94FMqSX+loB00UAWgIR0ChzAHnuAqedX2UKGgGR0BxUGE+PikwaAdNIgFoCEdAocwWEbo8p3V9lChoBkdAcPKJMg2ZRmgHTT0BaAhHQKHMrwEQoTh1fZQoaAZHQG+pM8ox59poB005AWgIR0ChzRvNFBppdX2UKGgGR0BwGkIF/x2CaAdNaAFoCEdAoc2qpaRp13V9lChoBkdAbeJHVf/m1mgHTVABaAhHQKHNs8Tzund1fZQoaAZHQG9VeWOZLIxoB006AWgIR0Chzcwj2SMcdX2UKGgGR0Bx8Q6xPfsNaAdNEAFoCEdAoc3kX7+DOHV9lChoBkdAcJcYE4ecQWgHTeMBaAhHQKHOR+qBErp1fZQoaAZHQG4nYDklu3toB003AWgIR0ChzowBgeA/dX2UKGgGR0Bwrn9JjDsMaAdNQgFoCEdAoc6qSxJNCnV9lChoBkdAcMUPjn3cpWgHTccBaAhHQKHQiAbQ1Jl1fZQoaAZHQHMaSMo+fRNoB00eAWgIR0Ch0TXuE25ydX2UKGgGR0BwVypgkTpQaAdNNwFoCEdAodFLBXS0B3V9lChoBkdARuwC+10DEGgHS9VoCEdAodFgYxcmjXV9lChoBkdAb/axnnMdLmgHTUsBaAhHQKHRYLjPv8Z1fZQoaAZHQG09CyIHkcVoB01GAWgIR0Ch0bj9fkWAdX2UKGgGR0Bw5yG0u14PaAdNSAFoCEdAodHvJA+pwXV9lChoBkdAcGQvitJWemgHTTMBaAhHQKHSNCXyAhB1fZQoaAZHQHBGYllbu+hoB00fAWgIR0Ch0jhFmWdFdX2UKGgGR0Bvc9SqEOAiaAdNqQFoCEdAodJq619fC3V9lChoBkdAbyG4//vOQmgHTSABaAhHQKHSsgsbvPV1fZQoaAZHQHBtJokAxSJoB00lAWgIR0Ch0tbzkIX1dX2UKGgGR0BwrixB3RoiaAdNGQFoCEdAodMXIEKVp3V9lChoBkdAcO51IAfdRGgHTXwBaAhHQKHUjNPgvUV1fZQoaAZHQHGsVCTlkpZoB02dAWgIR0Ch1oN2C/XYdX2UKGgGR0BxsK2UjcEeaAdNLQFoCEdAodagljVhC3V9lChoBkdAcyQgmZ3LWGgHTQUBaAhHQKHWpumaYu11fZQoaAZHQHE8nIyTINpoB00vAWgIR0Ch16LdnCfpdX2UKGgGR0BwYa3mV7hOaAdNIwFoCEdAodfvQQcxTXV9lChoBkdAcVBRhc7hemgHTR4BaAhHQKHYfJaq0dB1fZQoaAZHQHBqzeoDPnloB00jAWgIR0Ch2KjxCpm3dX2UKGgGR0By5RJtix3WaAdNZwFoCEdAodkPrrxAjnV9lChoBkdAb2j/cWTHKmgHTS8BaAhHQKHZSuTRplB1fZQoaAZHQHH36TB68g9oB01yAWgIR0Ch4oSQo1DTdX2UKGgGR0BvDQrYoRZmaAdNZgFoCEdAoeLPoV2zOXV9lChoBkdAcZjdt2s7uGgHTT4BaAhHQKHi6+IuXeF1fZQoaAZHQHM1zkhib2FoB01lAWgIR0Ch45kx7AtWdX2UKGgGR0Bx4fabnX/YaAdNbQFoCEdAoeQA55qubXV9lChoBkdAbYh78ejmCGgHTTEBaAhHQKHkMzHjp9t1fZQoaAZHQG+bKdpZfUpoB00hAWgIR0Ch5RxUFSsKdX2UKGgGR0BxetsBQvYfaAdNNQFoCEdAoeWHlMh5gXV9lChoBkdAcOgWGh24eGgHTRIBaAhHQKHlljWkJrt1fZQoaAZHQHEvJIDoyKxoB00cAWgIR0Ch5nEjX4CZdX2UKGgGR0BwS0eZG8VYaAdNCgFoCEdAoeaO/N7jUHV9lChoBkdAcFwdz4k/r2gHTUABaAhHQKHmoHymQ8x1fZQoaAZHQG3vFjd56dFoB00SAWgIR0Ch5tsBhhH9dX2UKGgGR0ByS70jC53DaAdNoAFoCEdAoedod2gWanV9lChoBkdAcC19q1w5vWgHTUoBaAhHQKHneZGax5d1fZQoaAZHQHIuygTRIBloB01wAWgIR0Ch5715a/yodX2UKGgGR0BxBuyv9tMxaAdNQAFoCEdAoefmMMqjJ3V9lChoBkdAbo9+1jRUm2gHTRcBaAhHQKHoypR4yGl1fZQoaAZHQHE0HPAwfyRoB010AWgIR0Ch6cGcWj46dX2UKGgGR0Bu2ZCa7VawaAdNrQFoCEdAoensP8Q7LnV9lChoBkdAbrAO0b961WgHTSQBaAhHQKHqKR9PUKB1fZQoaAZHQG8/1qFh5PdoB016AWgIR0Ch6mHSnccmdX2UKGgGR0Bkh//aQFLWaAdN6ANoCEdAoepnL5h0AHV9lChoBkdAcbzqRlpXZGgHTUkBaAhHQKHrO83dbgV1fZQoaAZHQHIOl8LKFIxoB00fAWgIR0Ch64E1EVnFdX2UKGgGR0BuHJD3M6ikaAdNIwFoCEdAoeuh1s+FDnV9lChoBkdAcVEuJDVpbmgHTS0BaAhHQKHtLtF8XvZ1fZQoaAZHQHGRoT0xubZoB01tAWgIR0Ch7WPiDM/ydX2UKGgGR0BwnUSbpeNUaAdNVgFoCEdAoe2pKODJ2nV9lChoBkdAcb0rylN1yWgHTckBaAhHQKHtymw7kn11fZQoaAZHQG5OuWjXWe9oB02dAWgIR0Ch7dl+d9UkdX2UKGgGR0Bvs05MlC1JaAdNHwFoCEdAoe99fLLZBnV9lChoBkdAcSu6fJ3gUGgHTTwBaAhHQKHv0Y5T6zp1fZQoaAZHQG8KV1fVqetoB018AWgIR0Ch7+kGZ/kOdX2UKGgGR0ByHTF85S3taAdNvwFoCEdAofAdGsmv4nV9lChoBkdAcivmhM8HOmgHTWIBaAhHQKHwZ6Rhc7h1fZQoaAZHQHEvnmJWNm1oB037AWgIR0Ch8KbVJ+UhdX2UKGgGR0BxENz+3pfQaAdNUQFoCEdAofC0vIwM6XV9lChoBkdAcP36ab4Ju2gHTVYBaAhHQKHww56t1ZF1fZQoaAZHQHBJCKFZgXxoB006AWgIR0Ch8SQL3K0VdX2UKGgGR0ByEgZvUBn0aAdNMwFoCEdAofFM5MlC1XV9lChoBkdAcRhKp1ie/mgHTUABaAhHQKHxrTgl4Tt1fZQoaAZHQHH4yBoVVPxoB00eAWgIR0Ch8xjtXxOMdX2UKGgGR0Bxe+8pTdcjaAdNLgFoCEdAofMlCRfWtnV9lChoBkdAcNosIE8q4GgHTUEBaAhHQKHzV99+gDl1fZQoaAZHQG093DWK/EhoB01CAWgIR0Ch9AE2Hck/dX2UKGgGR0BxpVvES/TLaAdNUgFoCEdAofRu7+T/yXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,24 +76,24 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 16,
80
- "n_steps": 1024,
81
- "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13a4ce83a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13a4ce8430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13a4ce84c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13a4ce8550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f13a4ce85e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f13a4ce8670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13a4ce8700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13a4ce8790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f13a4ce8820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13a4ce88b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13a4ce8940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13a4ce89d0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f13a4ce4e00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 3014656,
25
+ "_total_timesteps": 3000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1689050504332737274,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAJrvFj446fq7OT6EPHe8zbqT01C947asuwAAgD8AAIA/Zmc8vZUaqT8oreS+MO0Ev9o0Q7prWmC9AAAAAAAAAABN97A9XGNauknPLDZ9mcQ06Cl6uLWb9LYAAIA/AACAP2YfiD3T1ns/xfVnPet1RL84Xj89A+nnvAAAAAAAAAAAmkX7O4Vz/rmLAaC7URWcuSkMdLpzr8E6AAAAAAAAgD9Anwi+H13xuz5ihb0peB68PedPPdMlBT0AAIA/AACAP5o9OzymQC0/BVIjPdBJY79FkBE9y0ZRPQAAAAAAAAAAALHPPHNERz8MThw9hjhhv3T3az0cb0A8AAAAAAAAAAA6bCM+tv59vF4yUjv5I965gdzcvd5sxroAAIA/AACAP2BXHj5Dq0C80rZFuufPkjhezLK9lnyGOQAAgD8AAIA/WunIPcOpNLp+47w7eX/YNE3pBrpu7MkzAAAAAAAAgD/NsFc9CmdGuQW/gbgzSscxy9uKuzd1mzcAAIA/AACAP016Uj0URKu6xpkKvtNbkDtfH7e5qtCRPAAAgD8AAIA/gBx1vuIkGz/4XXi7Mf4Rv+5nmb71Sxk+AAAAAAAAAABa+ty99vR9uthbRTvdYZU54Bm+uuhHKToAAIA/AAAAAACgnzx8NoU+F2GivRy5FL/DOoA7agF3vQAAAAAAAAAAjbEZPo90L7yqp7w7jwg2uryYmb1WGxa7AACAPwAAgD86SDK+aNiiPkK/zLvh+fS+g9dAvmjegj0AAAAAAAAAAGa6bbxI65i6zSj+PHA/JbYnQq+6zQwatQAAgD8AAIA/syIrvgPjV7xszA87gU8qOTkBwz1pOju6AACAPwAAgD+Aa6W9hQPVuUpXzz2JTii5wU2TuR42JrgAAAAAAACAP808K7spTVM93hTOPS+3gr6PP6M8riM8PQAAAAAAAAAAs1aEvja3nD9fshu/ie0HvxzNtb7G7Iu+AAAAAAAAAADa77C9FKTSunGugT1j3hI9FFb3u+1d+z0AAIA/AACAP40SuD1cUy66fX3pur9VVbYNQj46zSoIOgAAAAAAAIA/UzR3PkvkCz/1CMG9y7Mpv+4pOj72rd29AAAAAAAAAACasaC70mv3u05Vhjy8LKQ8w0VSPZayiL0AAIA/AACAPw3Esb32lCy6i8Rfuq9m4baF4PW4BnSIOAAAgD8AAAAAALqaPEPRBbxhNYm9CbttvpJmAzvDy02/AACAPwAAgD+aOM489vRZumUSxLo1RP64vSQoOq7H7TkAAIA/AACAP5pJKb4hO4u8PpxCOg0nnThwDfI9/aiGuQAAgD8AAIA/MyuhPfZ4CbrIPPe3srEBsx+YLzt4/BA3AACAPwAAgD96SYQ+FU3MPgH8vb6BKha//vsNPUL7+r0AAAAAAAAAAAAfsT3pPxw9QE7kveCpZL5aXEm9YfC/vQAAAAAAAAAAuvwGvottLD+uu9m98vI8v0L5Ib4wlfM8AAAAAAAAAADzCDG+gaWZvEaxXbxwvvi6mKMMPqfexDsAAIA/AACAP8Cflr0f3bO5e88dPQwfM7H0Uo07StrYswAAgD8AAIA/QBDQvRSO1rieXbi5W4s8tYACmTudOt04AACAPwAAAABmhm09w8F/uhhOXr0g91E8B11GO4YlNz0AAIA/AACAPzPtJL2eqcw91tbMvAbhVL6RJIK9Wx1+PQAAAAAAAAAAKgyFvvA+hT41yaM+WgcLv1cu9zxaqvI9AAAAAAAAAACad8M8XKNruhomWTNN+asvJtNXuu08yrMAAIA/AACAPzNb+rsbpYW8xdVOPd6Ccb0M+5k8arVfPQAAgD8AAIA/s+BsPSuolj+cGhQ+wEIuv/42mD36cLI8AAAAAAAAAAAAhKa7tBZLP/Wt3rys9Xe/PC0+PKKlfT0AAAAAAAAAAMClM74PlFy8Rl0tu0Y/SLn9e8Q91ftcOgAAgD8AAIA/TRQXvWynmLsT6/c9DoaUvNWFkDst3+q9AACAPwAAgD8tcig+tuQuvI0hCbt6ZA05hd2cvVfULzoAAIA/AACAPxozdD24HuW3TbHTvFwjdrIXpqa70f9HswAAgD8AAIA/mlkXOrrRsz/yv7Q77KzjvVdaELvFOi48AAAAAAAAAAAAsA87eLq9P4FAsLpbDjK+0dnzu3nSFz0AAAAAAAAAAJqZubrsiZm50FlducIEq7RvwpA78vOBOAAAgD8AAAAAQIoJPtpUVz+Rfkw+e80hv8iRYT4RKUw5AAAAAAAAAAAzu+I9RqahPtKWsb0Rfgq/yVVbPSquA74AAAAAAAAAAAa6fT5d/AA/HgCGvWAjFr8H57o+G7YCvgAAAAAAAAAATaPzvZ59Qz+uAdi91P4dv4VHJ76fPpS8AAAAAAAAAACNUAK+hCOKP9E/O75mqDa/v6ErvoUPKL0AAAAAAAAAAE2/H71xulQ8+rRUPnNRKb4lQyY+onqVvgAAAAAAAIA/GlhFvcPBXrrtBSY57a2PNJIip7hhf0C4AACAPwAAgD/AVhg+UUu1PUtPUL7672a+HYlvPO3ear0AAAAAAAAAAMaFHr6PayC81xICu08h3rh4JYM9PhYkOgAAgD8AAIA/8zMXPgMrarx7yRQ8CQ2SPIwgkT3dKGu9AACAPwAAgD+NlhY+nEsLvB5+4bpyArY480tfvQ7IEToAAIA/AACAP83wGT6px028+ugWO+4kSbn3aMC9DklOugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEeD+BH09SMAWyUS72MAXSUR0Cuc+i/fwZwdX2UKGgGR0Bz3C+QEIPcaAdLv2gIR0CudCL56+nJdX2UKGgGR0BxLKOjqOcUaAdLqWgIR0CudCEzO5avdX2UKGgGR0Bw8RLUTcqOaAdLn2gIR0CudGp2MbWFdX2UKGgGR0ByGTgCOmzjaAdL12gIR0CudIcfFJg9dX2UKGgGR0Bx6f9XLeQ/aAdLnWgIR0CudIY77sOYdX2UKGgGR0BvfZOafBepaAdLl2gIR0CudMaVdHDrdX2UKGgGR0BzQpJOFg2IaAdNAAFoCEdArnUt6ol2NnV9lChoBkdAcM73gk1MumgHS8RoCEdArnU+EIw/PnV9lChoBkdAcXVO/+Kjz2gHS6xoCEdArnVtbgTAWXV9lChoBkdAcSnSR8twrGgHTRkBaAhHQK51ebI91U51fZQoaAZHQHCYMxj8UEhoB0vWaAhHQK51r1RLsa91fZQoaAZHQHKof6wdKdxoB0vZaAhHQK51wFyq+8J1fZQoaAZHQHLb8IqslsxoB0uxaAhHQK517xZMcp91fZQoaAZHQHI/QmE4//xoB0vMaAhHQK5162606YF1fZQoaAZHQHEfS+Yc/+toB0vIaAhHQK516gJ1JUZ1fZQoaAZHQGVv3Xyy2QZoB03oA2gIR0Cudj+HaewtdX2UKGgGR0BzQh96Tnq3aAdL+mgIR0Cudoo+wC8wdX2UKGgGR0BwJyAG0NSZaAdLomgIR0Cuds36hxo7dX2UKGgGR0Bx85ymygPFaAdLyGgIR0CudwRR2r4ndX2UKGgGR0BwtG7kGRmsaAdLnGgIR0CudyoP07KadX2UKGgGR0BzBqzgMtsfaAdL2mgIR0Cud1SX2M86dX2UKGgGR0BwJhpGnXNDaAdLyGgIR0Cud6r3Cbc5dX2UKGgGR0BxzJV+7UXpaAdL+WgIR0CueCKs2eg+dX2UKGgGR0BwdYOiFj/daAdLoWgIR0CueFKU/wAmdX2UKGgGR0Bw42w4bS7YaAdLymgIR0CueJdfkWAPdX2UKGgGR0ByH5XzUZvUaAdLi2gIR0CueLAfU4JedX2UKGgGR0ByReCI1tO3aAdLjmgIR0CueYX1rZandX2UKGgGR0Byl+WfK6nSaAdL1GgIR0CuekQpF1B/dX2UKGgGR0Bxzw30f5k9aAdLx2gIR0CuekM10knkdX2UKGgGR0BxwIsrd30PaAdL4WgIR0CuekKneiztdX2UKGgGR0BwiQFNcnmaaAdLpWgIR0CuelIMKCxvdX2UKGgGR0By9oILPUrkaAdLr2gIR0CuelCMYMvzdX2UKGgGR0BxjjkJa7mMaAdL/mgIR0CuemKEvkBCdX2UKGgGR0BvC3c32mHhaAdLsWgIR0Cuen9mg8KYdX2UKGgGR0BnORa/yoXLaAdN6ANoCEdArnp5+jM3ZXV9lChoBkdAco7OtGNJe2gHS9doCEdArnqXsAvL5nV9lChoBkdAcNVBu4wyqWgHS51oCEdArnsH9UCJXXV9lChoBkdAMgFoL5RCQmgHS2hoCEdArnv2V7hNunV9lChoBkdAcUupX6qKg2gHS6BoCEdArnwnY6GQCHV9lChoBkdAYH8tITXarWgHTegDaAhHQK58J6UJOWV1fZQoaAZHQHFCvmYBvJloB0unaAhHQK58M4vvjOt1fZQoaAZHQHAKHWnTAnFoB0ubaAhHQK58MZDzAet1fZQoaAZHQHHhXrhR64VoB0vnaAhHQK58br2QGOd1fZQoaAZHQGTglV1fVqhoB03oA2gIR0CufJkRSP2gdX2UKGgGR0ByMwpDu0CzaAdLvmgIR0CufLMhX8wYdX2UKGgGR0BylNIMBp6AaAdLtGgIR0CufS7pNbkfdX2UKGgGR0B0kYZhrnDBaAdLx2gIR0CufSqzAvcrdX2UKGgGR0ByX93s5XEJaAdL4mgIR0CufUcMd92HdX2UKGgGR0BxQWLYPGyYaAdLumgIR0CufWCNS619dX2UKGgGR0ByXaAlOXVtaAdLvmgIR0CufbI99tuUdX2UKGgGR0Bzm2pYLb5/aAdL+2gIR0CufbzaK1ohdX2UKGgGR0Bx+xDE3sHCaAdLsGgIR0CufhuHvc8DdX2UKGgGR0Bw74lZ5iVjaAdLv2gIR0CufnByKekIdX2UKGgGR0B0EaoJiRW+aAdLtGgIR0CufqU+TvAodX2UKGgGR0BxquYqoZQ6aAdLxmgIR0CufqMn7YTTdX2UKGgGR0Bv/aufVZs9aAdLvWgIR0CufuUuL740dX2UKGgGR0ByrUgZCOWCaAdLpmgIR0CufvcawUxmdX2UKGgGR0Bx7d6QeV9naAdLyGgIR0Cufx+DWbw0dX2UKGgGR0ByefRArxy5aAdL0WgIR0Cufx1+7UXpdX2UKGgGR0ByysLUkOZtaAdLyWgIR0Cufypo0ygxdX2UKGgGR0ByoSRdQfp2aAdLz2gIR0Cuf9CV0Lc9dX2UKGgGR0ByQUSGrS3LaAdLuGgIR0Cuf93H7xd6dX2UKGgGR0ByWZXxOLzgaAdLxGgIR0CugA0sOG0vdX2UKGgGR0BxKRjvuw5eaAdLwWgIR0CugFhRZU1idX2UKGgGR0Bwf76uW8h+aAdLtGgIR0CugIWll9SddX2UKGgGR0Bu/Lbah6BzaAdLsWgIR0CugLRFqi48dX2UKGgGR0ByWxK7I1cdaAdL3GgIR0CugSNx+8XfdX2UKGgGR0BwEQI5YHPeaAdLsWgIR0CugTJVKf4AdX2UKGgGR0BxQDZpSJj2aAdLo2gIR0CugVwpvxYrdX2UKGgGR0BxCaXMQmNSaAdLo2gIR0CugXSsKb8WdX2UKGgGR0Bz/paFEiMYaAdL4mgIR0CugfB06o2odX2UKGgGR0BywZyEL6UJaAdLz2gIR0Cugir8JlasdX2UKGgGR0BzEDH7xd6caAdL62gIR0CugirBTGYKdX2UKGgGR0BhJ10xM36zaAdN6ANoCEdAroIqlUIcBHV9lChoBkdAc2AFA3T/hmgHS/RoCEdAroJfpIMBqHV9lChoBkdAcUpR/ViF02gHS8NoCEdAroKf3evZAnV9lChoBkdAcABQ5myxA2gHS55oCEdAroK+cBltj3V9lChoBkdAcOLd07r9l2gHS7NoCEdAroMdfiPyTnV9lChoBkdAb5mRGtp22WgHS6loCEdAroNEz9CNTHV9lChoBkdAXTnSOR1YAGgHTegDaAhHQK6DfMIu5Bl1fZQoaAZHQHCtb5dnkDJoB0uvaAhHQK6Dlq1w5vN1fZQoaAZHQHCYFdxAB1doB0uZaAhHQK6ECJLuhK11fZQoaAZHQHIMo1UEPlNoB0u5aAhHQK6EG1NQCS11fZQoaAZHQHBpMfvF3pxoB0u9aAhHQK6EhTefqX51fZQoaAZHQHFOUrCm/FloB0uOaAhHQK6EoSt/4It1fZQoaAZHQHI4ReXzDoBoB0uJaAhHQK6E7Wsijcp1fZQoaAZHQG6fTB68g6loB0utaAhHQK6FRvGZNPB1fZQoaAZHQHEx8zyjHn5oB0u4aAhHQK6F4u01IiF1fZQoaAZHQG4fMh5gPVdoB0u3aAhHQK6F32MbWEt1fZQoaAZHQHFwsMRYigVoB0vUaAhHQK6F3a2WpqB1fZQoaAZHQHDeQ6p5u65oB0u8aAhHQK6GJKTSssB1fZQoaAZHQHMHHrIHTqloB00XAWgIR0CuhlCaAnUldX2UKGgGR0BwKsnH/95yaAdLlmgIR0CuhmPtUn5SdX2UKGgGR0By8TOzIFNdaAdL12gIR0CuhnuhkAggdX2UKGgGR0Bye+Tr3TNMaAdL52gIR0CuhrfRu0kXdX2UKGgGR0Bx3aVpsXSCaAdLmGgIR0CuhrV3dKukdX2UKGgGR0Bw1XR0EHMVaAdLwWgIR0Cuh2qtPpIMdX2UKGgGR0Bis9OTJQtSaAdN6ANoCEdArog3WjGkvnV9lChoBkdAcmv779AHFGgHS89oCEdArohtwFTvRnVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 230,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 64,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d195209c1a8127f47d2896fc5f4f41b42f49a6e2752646989d815a95d52ccaa7
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b62e3cb9a244ddf6e9e0fdb7feac3e09437f6f139d10afa562b9df78becceeb1
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:206a2db5c261890db58b431cc7ecd21a19f3a42e5535cc558fc31b88b55853f3
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2750b045dc57887e90c10ecd46a815034bda02bbad83ca75679529721274a8fd
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
  - Python: 3.10.12
3
- - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
 
1
  - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
  - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 244.66627036546294, "std_reward": 51.74742318740234, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T17:42:43.768403"}
 
1
+ {"mean_reward": 284.67513079173966, "std_reward": 7.641665801985677, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-11T05:49:31.018931"}