roleplaiapp commited on
Commit
4c108a5
·
verified ·
1 Parent(s): ac13ffc

Upload folder using huggingface_hub

Browse files
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Microsoft Open Source Code of Conduct
2
+
3
+ This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
4
+
5
+ Resources:
6
+
7
+ - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
8
+ - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
9
+ - Contact [[email protected]](mailto:[email protected]) with questions or concerns
LICENSE ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Microsoft.
2
+ Copyright (c) Microsoft Corporation.
3
+
4
+ MIT License
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - phi
9
+ - nlp
10
+ - math
11
+ - code
12
+ - chat
13
+ - conversational
14
+ - autoquant
15
+ - exl2
16
+ inference:
17
+ parameters:
18
+ temperature: 0
19
+ widget:
20
+ - messages:
21
+ - role: user
22
+ content: How should I explain the Internet?
23
+ library_name: transformers
24
+ ---
25
+
26
+ # Phi-4 Model Card
27
+
28
+ [Phi-4 Technical Report](https://arxiv.org/pdf/2412.08905)
29
+
30
+ ## Model Summary
31
+
32
+ | | |
33
+ |-------------------------|-------------------------------------------------------------------------------|
34
+ | **Developers** | Microsoft Research |
35
+ | **Description** | `phi-4` is a state-of-the-art open model built upon a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach was to ensure that small capable models were trained with data focused on high quality and advanced reasoning.<br><br>`phi-4` underwent a rigorous enhancement and alignment process, incorporating both supervised fine-tuning and direct preference optimization to ensure precise instruction adherence and robust safety measures |
36
+ | **Architecture** | 14B parameters, dense decoder-only Transformer model |
37
+ | **Inputs** | Text, best suited for prompts in the chat format |
38
+ | **Context length** | 16K tokens |
39
+ | **GPUs** | 1920 H100-80G |
40
+ | **Training time** | 21 days |
41
+ | **Training data** | 9.8T tokens |
42
+ | **Outputs** | Generated text in response to input |
43
+ | **Dates** | October 2024 – November 2024 |
44
+ | **Status** | Static model trained on an offline dataset with cutoff dates of June 2024 and earlier for publicly available data |
45
+ | **Release date** | December 12, 2024 |
46
+ | **License** | MIT |
47
+
48
+ ## Intended Use
49
+
50
+ | | |
51
+ |-------------------------------|-------------------------------------------------------------------------|
52
+ | **Primary Use Cases** | Our model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:<br><br>1. Memory/compute constrained environments.<br>2. Latency bound scenarios.<br>3. Reasoning and logic. |
53
+ | **Out-of-Scope Use Cases** | Our models is not specifically designed or evaluated for all downstream purposes, thus:<br><br>1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.<br>2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model’s focus on English.<br>3. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under. |
54
+
55
+ ## Data Overview
56
+
57
+ ### Training Datasets
58
+
59
+ Our training data is an extension of the data used for Phi-3 and includes a wide variety of sources from:
60
+
61
+ 1. Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code.
62
+
63
+ 2. Newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.).
64
+
65
+ 3. Acquired academic books and Q&A datasets.
66
+
67
+ 4. High quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
68
+
69
+ Multilingual data constitutes about 8% of our overall data. We are focusing on the quality of data that could potentially improve the reasoning ability for the model, and we filter the publicly available documents to contain the correct level of knowledge.
70
+
71
+ #### Benchmark datasets
72
+
73
+ We evaluated `phi-4` using [OpenAI’s SimpleEval](https://github.com/openai/simple-evals) and our own internal benchmarks to understand the model’s capabilities, more specifically:
74
+
75
+ * **MMLU:** Popular aggregated dataset for multitask language understanding.
76
+
77
+ * **MATH:** Challenging competition math problems.
78
+
79
+ * **GPQA:** Complex, graduate-level science questions.
80
+
81
+ * **DROP:** Complex comprehension and reasoning.
82
+
83
+ * **MGSM:** Multi-lingual grade-school math.
84
+
85
+ * **HumanEval:** Functional code generation.
86
+
87
+ * **SimpleQA:** Factual responses.
88
+
89
+ ## Safety
90
+
91
+ ### Approach
92
+
93
+ `phi-4` has adopted a robust safety post-training approach. This approach leverages a variety of both open-source and in-house generated synthetic datasets. The overall technique employed to do the safety alignment is a combination of SFT (Supervised Fine-Tuning) and iterative DPO (Direct Preference Optimization), including publicly available datasets focusing on helpfulness and harmlessness as well as various questions and answers targeted to multiple safety categories.
94
+
95
+ ### Safety Evaluation and Red-Teaming
96
+
97
+ Prior to release, `phi-4` followed a multi-faceted evaluation approach. Quantitative evaluation was conducted with multiple open-source safety benchmarks and in-house tools utilizing adversarial conversation simulation. For qualitative safety evaluation, we collaborated with the independent AI Red Team (AIRT) at Microsoft to assess safety risks posed by `phi-4` in both average and adversarial user scenarios. In the average user scenario, AIRT emulated typical single-turn and multi-turn interactions to identify potentially risky behaviors. The adversarial user scenario tested a wide range of techniques aimed at intentionally subverting the model’s safety training including jailbreaks, encoding-based attacks, multi-turn attacks, and adversarial suffix attacks.
98
+
99
+ Please refer to the technical report for more details on safety alignment.
100
+
101
+ ## Model Quality
102
+
103
+ To understand the capabilities, we compare `phi-4` with a set of models over OpenAI’s SimpleEval benchmark.
104
+
105
+ At the high-level overview of the model quality on representative benchmarks. For the table below, higher numbers indicate better performance:
106
+
107
+ | **Category** | **Benchmark** | **phi-4** (14B) | **phi-3** (14B) | **Qwen 2.5** (14B instruct) | **GPT-4o-mini** | **Llama-3.3** (70B instruct) | **Qwen 2.5** (72B instruct) | **GPT-4o** |
108
+ |------------------------------|---------------|-----------|-----------------|----------------------|----------------------|--------------------|-------------------|-----------------|
109
+ | Popular Aggregated Benchmark | MMLU | 84.8 | 77.9 | 79.9 | 81.8 | 86.3 | 85.3 | **88.1** |
110
+ | Science | GPQA | **56.1** | 31.2 | 42.9 | 40.9 | 49.1 | 49.0 | 50.6 |
111
+ | Math | MGSM<br>MATH | 80.6<br>**80.4** | 53.5<br>44.6 | 79.6<br>75.6 | 86.5<br>73.0 | 89.1<br>66.3* | 87.3<br>80.0 | **90.4**<br>74.6 |
112
+ | Code Generation | HumanEval | 82.6 | 67.8 | 72.1 | 86.2 | 78.9* | 80.4 | **90.6** |
113
+ | Factual Knowledge | SimpleQA | 3.0 | 7.6 | 5.4 | 9.9 | 20.9 | 10.2 | **39.4** |
114
+ | Reasoning | DROP | 75.5 | 68.3 | 85.5 | 79.3 | **90.2** | 76.7 | 80.9 |
115
+
116
+ \* These scores are lower than those reported by Meta, perhaps because simple-evals has a strict formatting requirement that Llama models have particular trouble following. We use the simple-evals framework because it is reproducible, but Meta reports 77 for MATH and 88 for HumanEval on Llama-3.3-70B.
117
+
118
+ ## Usage
119
+
120
+ ### Input Formats
121
+
122
+ Given the nature of the training data, `phi-4` is best suited for prompts using the chat format as follows:
123
+
124
+ ```bash
125
+ <|im_start|>system<|im_sep|>
126
+ You are a medieval knight and must provide explanations to modern people.<|im_end|>
127
+ <|im_start|>user<|im_sep|>
128
+ How should I explain the Internet?<|im_end|>
129
+ <|im_start|>assistant<|im_sep|>
130
+ ```
131
+
132
+ ### With `transformers`
133
+
134
+ ```python
135
+ import transformers
136
+
137
+ pipeline = transformers.pipeline(
138
+ "text-generation",
139
+ model="microsoft/phi-4",
140
+ model_kwargs={"torch_dtype": "auto"},
141
+ device_map="auto",
142
+ )
143
+
144
+ messages = [
145
+ {"role": "system", "content": "You are a medieval knight and must provide explanations to modern people."},
146
+ {"role": "user", "content": "How should I explain the Internet?"},
147
+ ]
148
+
149
+ outputs = pipeline(messages, max_new_tokens=128)
150
+ print(outputs[0]["generated_text"][-1])
151
+ ```
152
+
153
+ ## Responsible AI Considerations
154
+
155
+ Like other language models, `phi-4` can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
156
+
157
+ * **Quality of Service:** The model is trained primarily on English text. Languages other than English will experience worse performance. English language varieties with less representation in the training data might experience worse performance than standard American English. `phi-4` is not intended to support multilingual use.
158
+
159
+ * **Representation of Harms & Perpetuation of Stereotypes:** These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
160
+
161
+ * **Inappropriate or Offensive Content:** These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the use case.
162
+
163
+ * **Information Reliability:** Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
164
+
165
+ * **Limited Scope for Code:** Majority of `phi-4` training data is based in Python and uses common packages such as `typing`, `math`, `random`, `collections`, `datetime`, `itertools`. If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
166
+
167
+ Developers should apply responsible AI best practices and are responsible for ensuring that a specific use case complies with relevant laws and regulations (e.g. privacy, trade, etc.). Using safety services like [Azure AI Content Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety) that have advanced guardrails is highly recommended. Important areas for consideration include:
168
+
169
+ * **Allocation:** Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
170
+
171
+ * **High-Risk Scenarios:** Developers should assess suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
172
+
173
+ * **Misinformation:** Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
174
+
175
+ * **Generation of Harmful Content:** Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
176
+
177
+ * **Misuse:** Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
added_tokens.json ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|dummy_0|>": 100256,
3
+ "<|endoftext|>": 100257,
4
+ "<|fim_prefix|>": 100258,
5
+ "<|fim_middle|>": 100259,
6
+ "<|fim_suffix|>": 100260,
7
+ "<|dummy_1|>": 100261,
8
+ "<|dummy_2|>": 100262,
9
+ "<|dummy_3|>": 100263,
10
+ "<|im_start|>": 100264,
11
+ "<|im_end|>": 100265,
12
+ "<|im_sep|>": 100266,
13
+ "<|dummy_4|>": 100267,
14
+ "<|dummy_5|>": 100268,
15
+ "<|dummy_6|>": 100269,
16
+ "<|dummy_7|>": 100270,
17
+ "<|dummy_8|>": 100271,
18
+ "<|dummy_9|>": 100272,
19
+ "<|dummy_10|>": 100273,
20
+ "<|dummy_11|>": 100274,
21
+ "<|dummy_12|>": 100275,
22
+ "<|endofprompt|>": 100276,
23
+ "<|dummy_13|>": 100277,
24
+ "<|dummy_14|>": 100278,
25
+ "<|dummy_15|>": 100279,
26
+ "<|dummy_16|>": 100280,
27
+ "<|dummy_17|>": 100281,
28
+ "<|dummy_18|>": 100282,
29
+ "<|dummy_19|>": 100283,
30
+ "<|dummy_20|>": 100284,
31
+ "<|dummy_21|>": 100285,
32
+ "<|dummy_22|>": 100286,
33
+ "<|dummy_23|>": 100287,
34
+ "<|dummy_24|>": 100288,
35
+ "<|dummy_25|>": 100289,
36
+ "<|dummy_26|>": 100290,
37
+ "<|dummy_27|>": 100291,
38
+ "<|dummy_28|>": 100292,
39
+ "<|dummy_29|>": 100293,
40
+ "<|dummy_30|>": 100294,
41
+ "<|dummy_31|>": 100295,
42
+ "<|dummy_32|>": 100296,
43
+ "<|dummy_33|>": 100297,
44
+ "<|dummy_34|>": 100298,
45
+ "<|dummy_35|>": 100299,
46
+ "<|dummy_36|>": 100300,
47
+ "<|dummy_37|>": 100301,
48
+ "<|dummy_38|>": 100302,
49
+ "<|dummy_39|>": 100303,
50
+ "<|dummy_40|>": 100304,
51
+ "<|dummy_41|>": 100305,
52
+ "<|dummy_42|>": 100306,
53
+ "<|dummy_43|>": 100307,
54
+ "<|dummy_44|>": 100308,
55
+ "<|dummy_45|>": 100309,
56
+ "<|dummy_46|>": 100310,
57
+ "<|dummy_47|>": 100311,
58
+ "<|dummy_48|>": 100312,
59
+ "<|dummy_49|>": 100313,
60
+ "<|dummy_50|>": 100314,
61
+ "<|dummy_51|>": 100315,
62
+ "<|dummy_52|>": 100316,
63
+ "<|dummy_53|>": 100317,
64
+ "<|dummy_54|>": 100318,
65
+ "<|dummy_55|>": 100319,
66
+ "<|dummy_56|>": 100320,
67
+ "<|dummy_57|>": 100321,
68
+ "<|dummy_58|>": 100322,
69
+ "<|dummy_59|>": 100323,
70
+ "<|dummy_60|>": 100324,
71
+ "<|dummy_61|>": 100325,
72
+ "<|dummy_62|>": 100326,
73
+ "<|dummy_63|>": 100327,
74
+ "<|dummy_64|>": 100328,
75
+ "<|dummy_65|>": 100329,
76
+ "<|dummy_66|>": 100330,
77
+ "<|dummy_67|>": 100331,
78
+ "<|dummy_68|>": 100332,
79
+ "<|dummy_69|>": 100333,
80
+ "<|dummy_70|>": 100334,
81
+ "<|dummy_71|>": 100335,
82
+ "<|dummy_72|>": 100336,
83
+ "<|dummy_73|>": 100337,
84
+ "<|dummy_74|>": 100338,
85
+ "<|dummy_75|>": 100339,
86
+ "<|dummy_76|>": 100340,
87
+ "<|dummy_77|>": 100341,
88
+ "<|dummy_78|>": 100342,
89
+ "<|dummy_79|>": 100343,
90
+ "<|dummy_80|>": 100344,
91
+ "<|dummy_81|>": 100345,
92
+ "<|dummy_82|>": 100346,
93
+ "<|dummy_83|>": 100347,
94
+ "<|dummy_84|>": 100348,
95
+ "<|dummy_85|>": 100349,
96
+ "<|dummy_86|>": 100350,
97
+ "<|dummy_87|>": 100351
98
+ }
cal_data.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fcab341266d12659d1e4d8044ad957db6ead2e8a623e3289d6d5ee0323388af
3
+ size 1638488
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-4",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {},
9
+ "bos_token_id": 100257,
10
+ "embd_pdrop": 0.0,
11
+ "eos_token_id": 100257,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 17920,
16
+ "max_position_embeddings": 16384,
17
+ "model_type": "phi3",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 10,
21
+ "original_max_position_embeddings": 16384,
22
+ "pad_token_id": 100257,
23
+ "resid_pdrop": 0.0,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 250000,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.47.0",
31
+ "use_cache": true,
32
+ "vocab_size": 100352
33
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": [
5
+ 100257,
6
+ 100265
7
+ ],
8
+ "transformers_version": "4.47.0"
9
+ }
hidden_states.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4d86a81e83a5d69718d116fd032c1bd6f6a74efaa31a85dedc7f04380fa3486
3
+ size 2097160800
job_new.json ADDED
The diff for this file is too large to render. See raw diff
 
measurement.json ADDED
The diff for this file is too large to render. See raw diff
 
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29319014400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00004-of-00006.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00004-of-00006.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
164
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
165
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
166
+ "model.layers.32.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
167
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
168
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
169
+ "model.layers.32.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
170
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
171
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
172
+ "model.layers.33.mlp.gate_up_proj.weight": "model-00005-of-00006.safetensors",
173
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
174
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
175
+ "model.layers.33.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
176
+ "model.layers.34.input_layernorm.weight": "model-00006-of-00006.safetensors",
177
+ "model.layers.34.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
178
+ "model.layers.34.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
179
+ "model.layers.34.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
180
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
181
+ "model.layers.34.self_attn.qkv_proj.weight": "model-00005-of-00006.safetensors",
182
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
183
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
184
+ "model.layers.35.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
185
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
186
+ "model.layers.35.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
187
+ "model.layers.35.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
188
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
189
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
190
+ "model.layers.36.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
191
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
192
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
193
+ "model.layers.36.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
194
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
195
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
196
+ "model.layers.37.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
197
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
198
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
199
+ "model.layers.37.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
200
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
201
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
202
+ "model.layers.38.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
203
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
204
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
205
+ "model.layers.38.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
206
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
207
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
208
+ "model.layers.39.mlp.gate_up_proj.weight": "model-00006-of-00006.safetensors",
209
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
210
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
211
+ "model.layers.39.self_attn.qkv_proj.weight": "model-00006-of-00006.safetensors",
212
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
213
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
214
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
215
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
219
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
220
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
222
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
226
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
227
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
228
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
229
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
230
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
231
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
232
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
233
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
234
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
235
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
236
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
237
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
238
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
239
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
240
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
241
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
242
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
243
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
244
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00002-of-00006.safetensors",
245
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
246
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
247
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00002-of-00006.safetensors",
248
+ "model.norm.weight": "model-00006-of-00006.safetensors"
249
+ }
250
+ }
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad3f66ab6db7ff0ab389a03f7f86ee08d0f80befb62aec441d297264bbc64a73
3
+ size 5686836552
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,780 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "100256": {
5
+ "content": "<|dummy_0|>",
6
+ "lstrip": true,
7
+ "normalized": false,
8
+ "rstrip": true,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100257": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": true,
15
+ "normalized": false,
16
+ "rstrip": true,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "100258": {
21
+ "content": "<|fim_prefix|>",
22
+ "lstrip": true,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "100259": {
29
+ "content": "<|fim_middle|>",
30
+ "lstrip": true,
31
+ "normalized": false,
32
+ "rstrip": true,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "100260": {
37
+ "content": "<|fim_suffix|>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": true,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "100261": {
45
+ "content": "<|dummy_1|>",
46
+ "lstrip": true,
47
+ "normalized": false,
48
+ "rstrip": true,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "100262": {
53
+ "content": "<|dummy_2|>",
54
+ "lstrip": true,
55
+ "normalized": false,
56
+ "rstrip": true,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "100263": {
61
+ "content": "<|dummy_3|>",
62
+ "lstrip": true,
63
+ "normalized": false,
64
+ "rstrip": true,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "100264": {
69
+ "content": "<|im_start|>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": true,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "100265": {
77
+ "content": "<|im_end|>",
78
+ "lstrip": true,
79
+ "normalized": false,
80
+ "rstrip": true,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "100266": {
85
+ "content": "<|im_sep|>",
86
+ "lstrip": true,
87
+ "normalized": false,
88
+ "rstrip": true,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "100267": {
93
+ "content": "<|dummy_4|>",
94
+ "lstrip": true,
95
+ "normalized": false,
96
+ "rstrip": true,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "100268": {
101
+ "content": "<|dummy_5|>",
102
+ "lstrip": true,
103
+ "normalized": false,
104
+ "rstrip": true,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "100269": {
109
+ "content": "<|dummy_6|>",
110
+ "lstrip": true,
111
+ "normalized": false,
112
+ "rstrip": true,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "100270": {
117
+ "content": "<|dummy_7|>",
118
+ "lstrip": true,
119
+ "normalized": false,
120
+ "rstrip": true,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "100271": {
125
+ "content": "<|dummy_8|>",
126
+ "lstrip": true,
127
+ "normalized": false,
128
+ "rstrip": true,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "100272": {
133
+ "content": "<|dummy_9|>",
134
+ "lstrip": true,
135
+ "normalized": false,
136
+ "rstrip": true,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "100273": {
141
+ "content": "<|dummy_10|>",
142
+ "lstrip": true,
143
+ "normalized": false,
144
+ "rstrip": true,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "100274": {
149
+ "content": "<|dummy_11|>",
150
+ "lstrip": true,
151
+ "normalized": false,
152
+ "rstrip": true,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "100275": {
157
+ "content": "<|dummy_12|>",
158
+ "lstrip": true,
159
+ "normalized": false,
160
+ "rstrip": true,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "100276": {
165
+ "content": "<|endofprompt|>",
166
+ "lstrip": true,
167
+ "normalized": false,
168
+ "rstrip": true,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "100277": {
173
+ "content": "<|dummy_13|>",
174
+ "lstrip": true,
175
+ "normalized": false,
176
+ "rstrip": true,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "100278": {
181
+ "content": "<|dummy_14|>",
182
+ "lstrip": true,
183
+ "normalized": false,
184
+ "rstrip": true,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "100279": {
189
+ "content": "<|dummy_15|>",
190
+ "lstrip": true,
191
+ "normalized": false,
192
+ "rstrip": true,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "100280": {
197
+ "content": "<|dummy_16|>",
198
+ "lstrip": true,
199
+ "normalized": false,
200
+ "rstrip": true,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "100281": {
205
+ "content": "<|dummy_17|>",
206
+ "lstrip": true,
207
+ "normalized": false,
208
+ "rstrip": true,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "100282": {
213
+ "content": "<|dummy_18|>",
214
+ "lstrip": true,
215
+ "normalized": false,
216
+ "rstrip": true,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "100283": {
221
+ "content": "<|dummy_19|>",
222
+ "lstrip": true,
223
+ "normalized": false,
224
+ "rstrip": true,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "100284": {
229
+ "content": "<|dummy_20|>",
230
+ "lstrip": true,
231
+ "normalized": false,
232
+ "rstrip": true,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "100285": {
237
+ "content": "<|dummy_21|>",
238
+ "lstrip": true,
239
+ "normalized": false,
240
+ "rstrip": true,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "100286": {
245
+ "content": "<|dummy_22|>",
246
+ "lstrip": true,
247
+ "normalized": false,
248
+ "rstrip": true,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "100287": {
253
+ "content": "<|dummy_23|>",
254
+ "lstrip": true,
255
+ "normalized": false,
256
+ "rstrip": true,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "100288": {
261
+ "content": "<|dummy_24|>",
262
+ "lstrip": true,
263
+ "normalized": false,
264
+ "rstrip": true,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "100289": {
269
+ "content": "<|dummy_25|>",
270
+ "lstrip": true,
271
+ "normalized": false,
272
+ "rstrip": true,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "100290": {
277
+ "content": "<|dummy_26|>",
278
+ "lstrip": true,
279
+ "normalized": false,
280
+ "rstrip": true,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "100291": {
285
+ "content": "<|dummy_27|>",
286
+ "lstrip": true,
287
+ "normalized": false,
288
+ "rstrip": true,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "100292": {
293
+ "content": "<|dummy_28|>",
294
+ "lstrip": true,
295
+ "normalized": false,
296
+ "rstrip": true,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "100293": {
301
+ "content": "<|dummy_29|>",
302
+ "lstrip": true,
303
+ "normalized": false,
304
+ "rstrip": true,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "100294": {
309
+ "content": "<|dummy_30|>",
310
+ "lstrip": true,
311
+ "normalized": false,
312
+ "rstrip": true,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "100295": {
317
+ "content": "<|dummy_31|>",
318
+ "lstrip": true,
319
+ "normalized": false,
320
+ "rstrip": true,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "100296": {
325
+ "content": "<|dummy_32|>",
326
+ "lstrip": true,
327
+ "normalized": false,
328
+ "rstrip": true,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "100297": {
333
+ "content": "<|dummy_33|>",
334
+ "lstrip": true,
335
+ "normalized": false,
336
+ "rstrip": true,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "100298": {
341
+ "content": "<|dummy_34|>",
342
+ "lstrip": true,
343
+ "normalized": false,
344
+ "rstrip": true,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "100299": {
349
+ "content": "<|dummy_35|>",
350
+ "lstrip": true,
351
+ "normalized": false,
352
+ "rstrip": true,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "100300": {
357
+ "content": "<|dummy_36|>",
358
+ "lstrip": true,
359
+ "normalized": false,
360
+ "rstrip": true,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "100301": {
365
+ "content": "<|dummy_37|>",
366
+ "lstrip": true,
367
+ "normalized": false,
368
+ "rstrip": true,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "100302": {
373
+ "content": "<|dummy_38|>",
374
+ "lstrip": true,
375
+ "normalized": false,
376
+ "rstrip": true,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "100303": {
381
+ "content": "<|dummy_39|>",
382
+ "lstrip": true,
383
+ "normalized": false,
384
+ "rstrip": true,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "100304": {
389
+ "content": "<|dummy_40|>",
390
+ "lstrip": true,
391
+ "normalized": false,
392
+ "rstrip": true,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "100305": {
397
+ "content": "<|dummy_41|>",
398
+ "lstrip": true,
399
+ "normalized": false,
400
+ "rstrip": true,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "100306": {
405
+ "content": "<|dummy_42|>",
406
+ "lstrip": true,
407
+ "normalized": false,
408
+ "rstrip": true,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "100307": {
413
+ "content": "<|dummy_43|>",
414
+ "lstrip": true,
415
+ "normalized": false,
416
+ "rstrip": true,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "100308": {
421
+ "content": "<|dummy_44|>",
422
+ "lstrip": true,
423
+ "normalized": false,
424
+ "rstrip": true,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "100309": {
429
+ "content": "<|dummy_45|>",
430
+ "lstrip": true,
431
+ "normalized": false,
432
+ "rstrip": true,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "100310": {
437
+ "content": "<|dummy_46|>",
438
+ "lstrip": true,
439
+ "normalized": false,
440
+ "rstrip": true,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "100311": {
445
+ "content": "<|dummy_47|>",
446
+ "lstrip": true,
447
+ "normalized": false,
448
+ "rstrip": true,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "100312": {
453
+ "content": "<|dummy_48|>",
454
+ "lstrip": true,
455
+ "normalized": false,
456
+ "rstrip": true,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "100313": {
461
+ "content": "<|dummy_49|>",
462
+ "lstrip": true,
463
+ "normalized": false,
464
+ "rstrip": true,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "100314": {
469
+ "content": "<|dummy_50|>",
470
+ "lstrip": true,
471
+ "normalized": false,
472
+ "rstrip": true,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "100315": {
477
+ "content": "<|dummy_51|>",
478
+ "lstrip": true,
479
+ "normalized": false,
480
+ "rstrip": true,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "100316": {
485
+ "content": "<|dummy_52|>",
486
+ "lstrip": true,
487
+ "normalized": false,
488
+ "rstrip": true,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "100317": {
493
+ "content": "<|dummy_53|>",
494
+ "lstrip": true,
495
+ "normalized": false,
496
+ "rstrip": true,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "100318": {
501
+ "content": "<|dummy_54|>",
502
+ "lstrip": true,
503
+ "normalized": false,
504
+ "rstrip": true,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "100319": {
509
+ "content": "<|dummy_55|>",
510
+ "lstrip": true,
511
+ "normalized": false,
512
+ "rstrip": true,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "100320": {
517
+ "content": "<|dummy_56|>",
518
+ "lstrip": true,
519
+ "normalized": false,
520
+ "rstrip": true,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "100321": {
525
+ "content": "<|dummy_57|>",
526
+ "lstrip": true,
527
+ "normalized": false,
528
+ "rstrip": true,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "100322": {
533
+ "content": "<|dummy_58|>",
534
+ "lstrip": true,
535
+ "normalized": false,
536
+ "rstrip": true,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "100323": {
541
+ "content": "<|dummy_59|>",
542
+ "lstrip": true,
543
+ "normalized": false,
544
+ "rstrip": true,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "100324": {
549
+ "content": "<|dummy_60|>",
550
+ "lstrip": true,
551
+ "normalized": false,
552
+ "rstrip": true,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "100325": {
557
+ "content": "<|dummy_61|>",
558
+ "lstrip": true,
559
+ "normalized": false,
560
+ "rstrip": true,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "100326": {
565
+ "content": "<|dummy_62|>",
566
+ "lstrip": true,
567
+ "normalized": false,
568
+ "rstrip": true,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "100327": {
573
+ "content": "<|dummy_63|>",
574
+ "lstrip": true,
575
+ "normalized": false,
576
+ "rstrip": true,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "100328": {
581
+ "content": "<|dummy_64|>",
582
+ "lstrip": true,
583
+ "normalized": false,
584
+ "rstrip": true,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "100329": {
589
+ "content": "<|dummy_65|>",
590
+ "lstrip": true,
591
+ "normalized": false,
592
+ "rstrip": true,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "100330": {
597
+ "content": "<|dummy_66|>",
598
+ "lstrip": true,
599
+ "normalized": false,
600
+ "rstrip": true,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "100331": {
605
+ "content": "<|dummy_67|>",
606
+ "lstrip": true,
607
+ "normalized": false,
608
+ "rstrip": true,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "100332": {
613
+ "content": "<|dummy_68|>",
614
+ "lstrip": true,
615
+ "normalized": false,
616
+ "rstrip": true,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "100333": {
621
+ "content": "<|dummy_69|>",
622
+ "lstrip": true,
623
+ "normalized": false,
624
+ "rstrip": true,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "100334": {
629
+ "content": "<|dummy_70|>",
630
+ "lstrip": true,
631
+ "normalized": false,
632
+ "rstrip": true,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "100335": {
637
+ "content": "<|dummy_71|>",
638
+ "lstrip": true,
639
+ "normalized": false,
640
+ "rstrip": true,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "100336": {
645
+ "content": "<|dummy_72|>",
646
+ "lstrip": true,
647
+ "normalized": false,
648
+ "rstrip": true,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "100337": {
653
+ "content": "<|dummy_73|>",
654
+ "lstrip": true,
655
+ "normalized": false,
656
+ "rstrip": true,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "100338": {
661
+ "content": "<|dummy_74|>",
662
+ "lstrip": true,
663
+ "normalized": false,
664
+ "rstrip": true,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "100339": {
669
+ "content": "<|dummy_75|>",
670
+ "lstrip": true,
671
+ "normalized": false,
672
+ "rstrip": true,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "100340": {
677
+ "content": "<|dummy_76|>",
678
+ "lstrip": true,
679
+ "normalized": false,
680
+ "rstrip": true,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "100341": {
685
+ "content": "<|dummy_77|>",
686
+ "lstrip": true,
687
+ "normalized": false,
688
+ "rstrip": true,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "100342": {
693
+ "content": "<|dummy_78|>",
694
+ "lstrip": true,
695
+ "normalized": false,
696
+ "rstrip": true,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "100343": {
701
+ "content": "<|dummy_79|>",
702
+ "lstrip": true,
703
+ "normalized": false,
704
+ "rstrip": true,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "100344": {
709
+ "content": "<|dummy_80|>",
710
+ "lstrip": true,
711
+ "normalized": false,
712
+ "rstrip": true,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "100345": {
717
+ "content": "<|dummy_81|>",
718
+ "lstrip": true,
719
+ "normalized": false,
720
+ "rstrip": true,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "100346": {
725
+ "content": "<|dummy_82|>",
726
+ "lstrip": true,
727
+ "normalized": false,
728
+ "rstrip": true,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "100347": {
733
+ "content": "<|dummy_83|>",
734
+ "lstrip": true,
735
+ "normalized": false,
736
+ "rstrip": true,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "100348": {
741
+ "content": "<|dummy_84|>",
742
+ "lstrip": true,
743
+ "normalized": false,
744
+ "rstrip": true,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "100349": {
749
+ "content": "<|dummy_85|>",
750
+ "lstrip": true,
751
+ "normalized": false,
752
+ "rstrip": true,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "100350": {
757
+ "content": "<|dummy_86|>",
758
+ "lstrip": true,
759
+ "normalized": false,
760
+ "rstrip": true,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "100351": {
765
+ "content": "<|dummy_87|>",
766
+ "lstrip": true,
767
+ "normalized": false,
768
+ "rstrip": true,
769
+ "single_word": false,
770
+ "special": true
771
+ }
772
+ },
773
+ "bos_token": "<|endoftext|>",
774
+ "chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|><|im_start|>assistant<|im_sep|>'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}",
775
+ "clean_up_tokenization_spaces": false,
776
+ "eos_token": "<|endoftext|>",
777
+ "model_max_length": 16384,
778
+ "pad_token": "<|endoftext|>",
779
+ "tokenizer_class": "GPT2Tokenizer"
780
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff