# from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
# import numpy as np | |
# import tensorflow as tf | |
# valid_datagen = ImageDataGenerator( | |
# rescale=1./255 # Rescaling factor | |
# ) | |
# valid_dir = "/Users/rosh/Downloads/Validation_data" | |
# valid_data = valid_datagen.flow_from_directory(directory=valid_dir, | |
# batch_size=32, | |
# target_size=(224, 224), | |
# class_mode="categorical", | |
# seed=42) | |
# loaded_model = tf.keras.models.load_model('improved_model_4.h5') | |
# true_labels = [] | |
# for i in range(len(valid_data)): | |
# _, labels = valid_data[i] | |
# true_labels.extend(np.argmax(labels, axis=1)) | |
# | |
# # Print true labels | |
# print("True labels:", true_labels) | |
# pred_prob = loaded_model.predict(valid_data) | |
# preds = pred_prob.argmax(axis=1) | |
# print("Predicted: ") | |
# count = 0 | |
# for i in range(len(preds)): | |
# if true_labels[i] == preds[i]: | |
# count += 1 | |
# print(count) | |
#print(tf.keras.models.load_model('model_4_improved_1.h5').summary()) | |
import keras | |
import tensorflow as tf | |
print("Keras version:", keras.__version__) | |
print("TensorFlow version:", tf.__version__) | |