File size: 21,982 Bytes
f4b2cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import logging
import os
import numpy as np
import pytorch_lightning as pl
import torchmetrics
from torchmetrics.classification import F1Score, AUROC
import torch
import transformers
from transformers import AutoModel
import torch.nn.functional as F
import torch.nn as nn
import sys
sys.path.insert(0, '..')
from . import utils
from . import metrics
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = logging.getLogger()
class ProtoModule(pl.LightningModule):
def __init__(self,
pretrained_model,
num_classes,
label_order_path,
use_sigmoid=False,
use_cuda=True,
lr_prototypes=5e-2,
lr_features=2e-6,
lr_others=2e-2,
num_training_steps=5000,
num_warmup_steps=1000,
loss='BCE',
save_dir='output',
use_attention=True,
dot_product=False,
normalize=None,
final_layer=False,
reduce_hidden_size=None,
use_prototype_loss=False,
prototype_vector_path=None,
attention_vector_path=None,
eval_buckets=None,
seed=7
):
super().__init__()
self.label_order_path = label_order_path
self.loss = loss
self.normalize = normalize
self.lr_features = lr_features
self.lr_prototypes = lr_prototypes
self.lr_others = lr_others
self.use_sigmoid = use_sigmoid
self.use_cuda = use_cuda
self.use_attention = use_attention
self.dot_product = dot_product
self.num_training_steps = num_training_steps
self.num_warmup_steps = num_warmup_steps
self.save_dir = save_dir
self.num_classes = num_classes
self.final_layer = final_layer
self.use_prototype_loss = use_prototype_loss
self.prototype_vector_path = prototype_vector_path
self.eval_buckets = eval_buckets
# ARCHITECTURE SETUP #
from pytorch_lightning import seed_everything
seed_everything(seed)
# define distance measure
self.pairwise_dist = nn.PairwiseDistance(p=2)
# load BERT
self.bert = AutoModel.from_pretrained(pretrained_model)
# freeze BERT layers if lr_features == 0
if lr_features == 0:
for param in self.bert.parameters():
param.requires_grad = False
# define hidden size
self.hidden_size = self.bert.config.hidden_size
self.reduce_hidden_size = reduce_hidden_size is not None
if self.reduce_hidden_size:
self.reduce_hidden_size = True
self.bert_hidden_size = self.bert.config.hidden_size
self.hidden_size = reduce_hidden_size
# initialize linear layer for dim reduction
# reset the seed to make sure linear layer is the same as in preprocessing
pl.utilities.seed.seed_everything(seed=seed)
self.linear = nn.Linear(self.bert_hidden_size, self.hidden_size)
# load prototype vectors
if prototype_vector_path is not None:
prototype_vectors, self.num_prototypes_per_class = self.load_prototype_vectors(prototype_vector_path)
else:
prototype_vectors = torch.rand((self.num_classes, self.hidden_size))
self.num_prototypes_per_class = torch.ones(self.num_classes)
self.prototype_vectors = nn.Parameter(prototype_vectors, requires_grad=True)
self.prototype_to_class_map = self.build_prototype_to_class_mapping(self.num_prototypes_per_class)
self.num_prototypes = self.prototype_to_class_map.shape[0]
# load attention vectors
if attention_vector_path is not None:
attention_vectors = self.load_attention_vectors(attention_vector_path)
else:
attention_vectors = torch.rand((self.num_classes, self.hidden_size))
self.attention_vectors = nn.Parameter(attention_vectors, requires_grad=True)
if self.final_layer:
self.final_linear = self.build_final_layer()
# EVALUATION SETUP #
# setup metrics
self.train_metrics = self.setup_metrics()
# initialise metrics for evaluation on test set
# self.all_metrics = {**self.train_metrics, **self.setup_extensive_metrics()}
self.all_metrics = {**self.train_metrics}
self.save_hyperparameters()
logger.info("Finished init.")
def build_final_layer(self):
prototype_identity_matrix = torch.zeros(self.num_prototypes, self.num_classes)
for j in range(len(prototype_identity_matrix)):
prototype_identity_matrix[j, self.prototype_to_class_map[j]] = 1.0 / self.num_prototypes_per_class[
self.prototype_to_class_map[j]]
if self.use_cuda:
prototype_identity_matrix = prototype_identity_matrix.cuda()
return nn.Parameter(prototype_identity_matrix.double(), requires_grad=True)
def load_prototype_vectors(self, prototypes_per_class_path):
prototypes_per_class = torch.load(prototypes_per_class_path)
# store the number of prototypes for each class
num_prototypes_per_class = torch.tensor([len(prototypes_per_class[key]) for key in prototypes_per_class])
with open(self.label_order_path) as label_order_file:
ordered_labels = label_order_file.read().split(" ")
# get dimension from any of the stored vectors
vector_dim = len(list(prototypes_per_class.values())[0][0])
stacked_prototypes_per_class = [
prototypes_per_class[label] if label in prototypes_per_class else [np.random.rand(vector_dim)]
for label in ordered_labels]
prototype_matrix = torch.tensor([val for sublist in stacked_prototypes_per_class for val in sublist])
return prototype_matrix, num_prototypes_per_class
def build_prototype_to_class_mapping(self, num_prototypes_per_class):
return torch.arange(num_prototypes_per_class.shape[0]).repeat_interleave(num_prototypes_per_class.long(),
dim=0)
def load_attention_vectors(self, attention_vectors_path):
attention_vectors = torch.load(attention_vectors_path, map_location=self.device)
return attention_vectors
def setup_metrics(self):
self.f1 = F1Score(task="multilabel", num_labels=self.num_classes, threshold=0.269)
self.auroc_micro = AUROC(task="multilabel", num_labels=self.num_classes, average="micro")
self.auroc_macro = AUROC(task="multilabel", num_labels=self.num_classes, average="macro")
return {"auroc_micro": self.auroc_micro,
"auroc_macro": self.auroc_macro,
"f1": self.f1}
def setup_extensive_metrics(self):
self.pr_curve = metrics.PR_AUC(num_classes=self.num_classes)
extensive_metrics = {"pr_curve": self.pr_curve}
if self.eval_buckets:
buckets = self.eval_buckets
self.prcurve_0 = metrics.PR_AUCPerBucket(bucket=buckets["<5"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_1 = metrics.PR_AUCPerBucket(bucket=buckets["5-10"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_2 = metrics.PR_AUCPerBucket(bucket=buckets["11-50"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_3 = metrics.PR_AUCPerBucket(bucket=buckets["51-100"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_4 = metrics.PR_AUCPerBucket(bucket=buckets["101-1K"],
num_classes=self.num_classes,
compute_on_step=False)
self.prcurve_5 = metrics.PR_AUCPerBucket(bucket=buckets[">1K"],
num_classes=self.num_classes,
compute_on_step=False)
self.auroc_macro_0 = metrics.FilteredAUROCPerBucket(bucket=buckets["<5"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_1 = metrics.FilteredAUROCPerBucket(bucket=buckets["5-10"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_2 = metrics.FilteredAUROCPerBucket(bucket=buckets["11-50"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_3 = metrics.FilteredAUROCPerBucket(bucket=buckets["51-100"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_4 = metrics.FilteredAUROCPerBucket(bucket=buckets["101-1K"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
self.auroc_macro_5 = metrics.FilteredAUROCPerBucket(bucket=buckets[">1K"],
num_classes=self.num_classes,
compute_on_step=False,
average="macro")
bucket_metrics = {"pr_curve_0": self.prcurve_0,
"pr_curve_1": self.prcurve_1,
"pr_curve_2": self.prcurve_2,
"pr_curve_3": self.prcurve_3,
"pr_curve_4": self.prcurve_4,
"pr_curve_5": self.prcurve_5,
"auroc_macro_0": self.auroc_macro_0,
"auroc_macro_1": self.auroc_macro_1,
"auroc_macro_2": self.auroc_macro_2,
"auroc_macro_3": self.auroc_macro_3,
"auroc_macro_4": self.auroc_macro_4,
"auroc_macro_5": self.auroc_macro_5}
extensive_metrics = {**extensive_metrics, **bucket_metrics}
return extensive_metrics
def configure_optimizers(self):
joint_optimizer_specs = [{'params': self.prototype_vectors, 'lr': self.lr_prototypes},
{'params': self.attention_vectors, 'lr': self.lr_others},
{'params': self.bert.parameters(), 'lr': self.lr_features}]
if self.final_layer:
joint_optimizer_specs.append({'params': self.final_linear, 'lr': self.lr_prototypes})
if self.reduce_hidden_size:
joint_optimizer_specs.append({'params': self.linear.parameters(), 'lr': self.lr_others})
optimizer = torch.optim.AdamW(joint_optimizer_specs)
lr_scheduler = transformers.get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=self.num_warmup_steps,
num_training_steps=self.num_training_steps
)
return [optimizer], [lr_scheduler]
def on_train_start(self):
self.logger.log_hyperparams(self.hparams)
def training_step(self, batch, batch_idx):
targets = torch.tensor(batch['targets'], device=self.device)
if self.use_prototype_loss:
if batch_idx == 0:
self.prototype_loss = self.calculate_prototype_loss()
self.log('prototype_loss', self.prototype_loss, on_epoch=True)
logits, _ = self(batch)
if self.loss == "BCE":
train_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, target=targets.float())
else:
train_loss = torch.nn.MultiLabelSoftMarginLoss()(input=torch.sigmoid(logits), target=targets)
self.log('train_loss', train_loss, on_epoch=True)
if self.use_prototype_loss:
total_loss = train_loss + self.prototype_loss
else:
total_loss = train_loss
return total_loss
def forward(self, batch):
attention_mask = batch["attention_masks"]
input_ids = batch["input_ids"]
token_type_ids = batch["token_type_ids"]
if attention_mask.device != self.device:
attention_mask = attention_mask.to(self.device)
input_ids = input_ids.to(self.device)
token_type_ids = token_type_ids.to(self.device)
bert_output = self.bert(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
bert_vectors = bert_output.last_hidden_state
if self.reduce_hidden_size:
# apply linear layer to reduce token vector dimension
token_vectors = self.linear(bert_vectors)
else:
token_vectors = bert_vectors
if self.normalize is not None:
token_vectors = nn.functional.normalize(token_vectors, p=2, dim=self.normalize)
metadata = None
if self.use_attention:
attention_mask_from_tokens = utils.attention_mask_from_tokens(attention_mask, batch["tokens"])
weighted_samples_per_class, attention_per_token_and_class = self.calculate_token_class_attention(
token_vectors,
self.attention_vectors,
mask=attention_mask_from_tokens)
if self.normalize is not None:
weighted_samples_per_class = nn.functional.normalize(weighted_samples_per_class, p=2,
dim=self.normalize)
if self.use_cuda:
weighted_samples_per_class = weighted_samples_per_class.cuda()
self.num_prototypes_per_class = self.num_prototypes_per_class.cuda()
weighted_samples_per_prototype = weighted_samples_per_class.repeat_interleave(
self.num_prototypes_per_class
.long(), dim=1)
if self.dot_product:
score_per_prototype = torch.einsum('bs,abs->ab', self.prototype_vectors,
weighted_samples_per_prototype)
else:
score_per_prototype = -self.pairwise_dist(self.prototype_vectors.T,
weighted_samples_per_prototype.permute(0, 2, 1))
metadata = attention_per_token_and_class, weighted_samples_per_prototype
else:
score_per_prototype = -torch.cdist(token_vectors.mean(dim=1), self.prototype_vectors)
logits = self.get_logits_per_class(score_per_prototype)
return logits, metadata
def calculate_token_class_attention(self, batch_samples, class_attention_vectors, mask=None):
if class_attention_vectors.device != batch_samples.device:
class_attention_vectors = class_attention_vectors.to(batch_samples.device)
score_per_token_and_class = torch.einsum('ikj,mj->imk', batch_samples, class_attention_vectors)
if mask is not None:
expanded_mask = mask.unsqueeze(dim=1).expand(mask.size(0), class_attention_vectors.size(0), mask.size(1))
expanded_mask = F.pad(input=expanded_mask,
pad=(0, score_per_token_and_class.shape[2] - expanded_mask.shape[2]),
mode='constant', value=0)
score_per_token_and_class = score_per_token_and_class.masked_fill(
(expanded_mask == 0),
float('-inf'))
if self.use_sigmoid:
attention_per_token_and_class = torch.sigmoid(score_per_token_and_class) / \
score_per_token_and_class.shape[2]
else:
attention_per_token_and_class = F.softmax(score_per_token_and_class, dim=2)
class_weighted_tokens = torch.einsum('ikjm,ikj->ikjm',
batch_samples.unsqueeze(dim=1).expand(batch_samples.size(0),
self.num_classes,
batch_samples.size(1),
batch_samples.size(2)),
attention_per_token_and_class)
weighted_samples_per_class = class_weighted_tokens.sum(dim=2)
return weighted_samples_per_class, attention_per_token_and_class
def get_logits_per_class(self, score_per_prototype):
if self.final_layer:
if score_per_prototype.device != self.final_linear.device:
score_per_prototype = score_per_prototype.to(self.final_linear.device)
return torch.matmul(score_per_prototype, self.final_linear)
else:
batch_size = score_per_prototype.shape[0]
fill_vector = torch.full((batch_size, self.num_classes, self.num_prototypes), fill_value=float("-inf"),
dtype=score_per_prototype.dtype)
if self.use_cuda:
fill_vector = fill_vector.cuda()
self.prototype_to_class_map = self.prototype_to_class_map.cuda()
group_logits_by_class = fill_vector.scatter_(1,
self.prototype_to_class_map.unsqueeze(0).repeat(batch_size,
1).unsqueeze(
1),
score_per_prototype.unsqueeze(1))
max_logits_per_class = torch.max(group_logits_by_class, dim=2).values
return max_logits_per_class
def calculate_prototype_loss(self):
prototype_loss = 100 / torch.tensor([torch.cdist(
self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][:1],
self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][1:]).min() for i in
range(self.num_classes) if
len((self.prototype_to_class_map == i).nonzero()) > 1]).sum()
return prototype_loss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
targets = torch.tensor(batch['targets'], device=self.device)
logits, _ = self(batch)
for metric_name in self.train_metrics:
metric = self.train_metrics[metric_name]
metric(torch.sigmoid(logits), targets)
def validation_epoch_end(self, outputs) -> None:
for metric_name in self.train_metrics:
metric = self.train_metrics[metric_name]
self.log(f"val/{metric_name}", metric.compute())
metric.reset()
def test_step(self, batch, batch_idx):
with torch.no_grad():
targets = torch.tensor(batch['targets'], device=self.device)
logits, _ = self(batch)
preds = torch.sigmoid(logits)
for metric_name in self.all_metrics:
metric = self.all_metrics[metric_name]
metric(preds, targets)
return preds, targets
def test_epoch_end(self, outputs) -> None:
log_dir = self.logger.log_dir
for metric_name in self.all_metrics:
metric = self.all_metrics[metric_name]
value = metric.compute()
self.log(f"test/{metric_name}", value)
with open(os.path.join(log_dir, 'test_metrics.txt'), 'a') as metrics_file:
metrics_file.write(f"{metric_name}: {value}\n")
metric.reset()
predictions = torch.cat([out[0] for out in outputs])
# numpy.save(os.path.join(self.logger.log_dir, "predictions"), predictions)
targets = torch.cat([out[1] for out in outputs])
# numpy.save(os.path.join(self.logger.log_dir, "targets"), targets)
pr_auc = metrics.calculate_pr_auc(prediction=predictions, target=targets, num_classes=self.num_classes,
device=self.device)
with open(os.path.join(self.logger.log_dir, 'PR_AUC_score.txt'), 'w') as metrics_file:
metrics_file.write(f"PR AUC: {pr_auc.cpu().numpy()}\n")
|