File size: 21,982 Bytes
f4b2cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import logging
import os

import numpy as np
import pytorch_lightning as pl
import torchmetrics
from torchmetrics.classification import F1Score, AUROC
import torch
import transformers
from transformers import AutoModel
import torch.nn.functional as F
import torch.nn as nn
import sys


sys.path.insert(0, '..')

from . import utils
from . import metrics

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO)

logger = logging.getLogger()


class ProtoModule(pl.LightningModule):

    def __init__(self,
                 pretrained_model,
                 num_classes,
                 label_order_path,
                 use_sigmoid=False,
                 use_cuda=True,
                 lr_prototypes=5e-2,
                 lr_features=2e-6,
                 lr_others=2e-2,
                 num_training_steps=5000,
                 num_warmup_steps=1000,
                 loss='BCE',
                 save_dir='output',
                 use_attention=True,
                 dot_product=False,
                 normalize=None,
                 final_layer=False,
                 reduce_hidden_size=None,
                 use_prototype_loss=False,
                 prototype_vector_path=None,
                 attention_vector_path=None,
                 eval_buckets=None,
                 seed=7
                 ):

        super().__init__()
        self.label_order_path = label_order_path

        self.loss = loss
        self.normalize = normalize
        self.lr_features = lr_features
        self.lr_prototypes = lr_prototypes
        self.lr_others = lr_others
        self.use_sigmoid = use_sigmoid
        self.use_cuda = use_cuda

        self.use_attention = use_attention
        self.dot_product = dot_product

        self.num_training_steps = num_training_steps
        self.num_warmup_steps = num_warmup_steps
        self.save_dir = save_dir
        self.num_classes = num_classes

        self.final_layer = final_layer
        self.use_prototype_loss = use_prototype_loss
        self.prototype_vector_path = prototype_vector_path
        self.eval_buckets = eval_buckets

        # ARCHITECTURE SETUP #

        from pytorch_lightning import seed_everything
        seed_everything(seed)


        # define distance measure
        self.pairwise_dist = nn.PairwiseDistance(p=2)

        # load BERT
        self.bert = AutoModel.from_pretrained(pretrained_model)

        # freeze BERT layers if lr_features == 0
        if lr_features == 0:
            for param in self.bert.parameters():
                param.requires_grad = False

        # define hidden size
        self.hidden_size = self.bert.config.hidden_size
        self.reduce_hidden_size = reduce_hidden_size is not None
        if self.reduce_hidden_size:
            self.reduce_hidden_size = True
            self.bert_hidden_size = self.bert.config.hidden_size
            self.hidden_size = reduce_hidden_size

            # initialize linear layer for dim reduction
            # reset the seed to make sure linear layer is the same as in preprocessing
            pl.utilities.seed.seed_everything(seed=seed)
            self.linear = nn.Linear(self.bert_hidden_size, self.hidden_size)

        # load prototype vectors
        if prototype_vector_path is not None:
            prototype_vectors, self.num_prototypes_per_class = self.load_prototype_vectors(prototype_vector_path)
        else:
            prototype_vectors = torch.rand((self.num_classes, self.hidden_size))
            self.num_prototypes_per_class = torch.ones(self.num_classes)
        self.prototype_vectors = nn.Parameter(prototype_vectors, requires_grad=True)

        self.prototype_to_class_map = self.build_prototype_to_class_mapping(self.num_prototypes_per_class)
        self.num_prototypes = self.prototype_to_class_map.shape[0]

        # load attention vectors
        if attention_vector_path is not None:
            attention_vectors = self.load_attention_vectors(attention_vector_path)
        else:
            attention_vectors = torch.rand((self.num_classes, self.hidden_size))
        self.attention_vectors = nn.Parameter(attention_vectors, requires_grad=True)

        if self.final_layer:
            self.final_linear = self.build_final_layer()

        # EVALUATION SETUP #

        # setup metrics
        self.train_metrics = self.setup_metrics()

        # initialise metrics for evaluation on test set
        # self.all_metrics = {**self.train_metrics, **self.setup_extensive_metrics()}
        self.all_metrics = {**self.train_metrics}

        self.save_hyperparameters()
        logger.info("Finished init.")

    def build_final_layer(self):
        prototype_identity_matrix = torch.zeros(self.num_prototypes, self.num_classes)

        for j in range(len(prototype_identity_matrix)):
            prototype_identity_matrix[j, self.prototype_to_class_map[j]] = 1.0 / self.num_prototypes_per_class[
                self.prototype_to_class_map[j]]

        if self.use_cuda:
            prototype_identity_matrix = prototype_identity_matrix.cuda()

        return nn.Parameter(prototype_identity_matrix.double(), requires_grad=True)

    def load_prototype_vectors(self, prototypes_per_class_path):
        prototypes_per_class = torch.load(prototypes_per_class_path)

        # store the number of prototypes for each class
        num_prototypes_per_class = torch.tensor([len(prototypes_per_class[key]) for key in prototypes_per_class])

        with open(self.label_order_path) as label_order_file:
            ordered_labels = label_order_file.read().split(" ")

        # get dimension from any of the stored vectors
        vector_dim = len(list(prototypes_per_class.values())[0][0])

        stacked_prototypes_per_class = [
            prototypes_per_class[label] if label in prototypes_per_class else [np.random.rand(vector_dim)]
            for label in ordered_labels]

        prototype_matrix = torch.tensor([val for sublist in stacked_prototypes_per_class for val in sublist])

        return prototype_matrix, num_prototypes_per_class

    def build_prototype_to_class_mapping(self, num_prototypes_per_class):
        return torch.arange(num_prototypes_per_class.shape[0]).repeat_interleave(num_prototypes_per_class.long(),
                                                                                 dim=0)

    def load_attention_vectors(self, attention_vectors_path):
        attention_vectors = torch.load(attention_vectors_path, map_location=self.device)

        return attention_vectors

    def setup_metrics(self):
        self.f1 = F1Score(task="multilabel", num_labels=self.num_classes, threshold=0.269)
        self.auroc_micro = AUROC(task="multilabel", num_labels=self.num_classes, average="micro")
        self.auroc_macro = AUROC(task="multilabel", num_labels=self.num_classes, average="macro")

        return {"auroc_micro": self.auroc_micro,
                "auroc_macro": self.auroc_macro,
                "f1": self.f1}

    def setup_extensive_metrics(self):
        self.pr_curve = metrics.PR_AUC(num_classes=self.num_classes)

        extensive_metrics = {"pr_curve": self.pr_curve}

        if self.eval_buckets:
            buckets = self.eval_buckets

            self.prcurve_0 = metrics.PR_AUCPerBucket(bucket=buckets["<5"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.prcurve_1 = metrics.PR_AUCPerBucket(bucket=buckets["5-10"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.prcurve_2 = metrics.PR_AUCPerBucket(bucket=buckets["11-50"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.prcurve_3 = metrics.PR_AUCPerBucket(bucket=buckets["51-100"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.prcurve_4 = metrics.PR_AUCPerBucket(bucket=buckets["101-1K"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.prcurve_5 = metrics.PR_AUCPerBucket(bucket=buckets[">1K"],
                                                     num_classes=self.num_classes,
                                                     compute_on_step=False)

            self.auroc_macro_0 = metrics.FilteredAUROCPerBucket(bucket=buckets["<5"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")
            self.auroc_macro_1 = metrics.FilteredAUROCPerBucket(bucket=buckets["5-10"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")
            self.auroc_macro_2 = metrics.FilteredAUROCPerBucket(bucket=buckets["11-50"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")
            self.auroc_macro_3 = metrics.FilteredAUROCPerBucket(bucket=buckets["51-100"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")
            self.auroc_macro_4 = metrics.FilteredAUROCPerBucket(bucket=buckets["101-1K"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")
            self.auroc_macro_5 = metrics.FilteredAUROCPerBucket(bucket=buckets[">1K"],
                                                                num_classes=self.num_classes,
                                                                compute_on_step=False,
                                                                average="macro")

            bucket_metrics = {"pr_curve_0": self.prcurve_0,
                              "pr_curve_1": self.prcurve_1,
                              "pr_curve_2": self.prcurve_2,
                              "pr_curve_3": self.prcurve_3,
                              "pr_curve_4": self.prcurve_4,
                              "pr_curve_5": self.prcurve_5,
                              "auroc_macro_0": self.auroc_macro_0,
                              "auroc_macro_1": self.auroc_macro_1,
                              "auroc_macro_2": self.auroc_macro_2,
                              "auroc_macro_3": self.auroc_macro_3,
                              "auroc_macro_4": self.auroc_macro_4,
                              "auroc_macro_5": self.auroc_macro_5}

            extensive_metrics = {**extensive_metrics, **bucket_metrics}

        return extensive_metrics

    def configure_optimizers(self):
        joint_optimizer_specs = [{'params': self.prototype_vectors, 'lr': self.lr_prototypes},
                                 {'params': self.attention_vectors, 'lr': self.lr_others},
                                 {'params': self.bert.parameters(), 'lr': self.lr_features}]

        if self.final_layer:
            joint_optimizer_specs.append({'params': self.final_linear, 'lr': self.lr_prototypes})

        if self.reduce_hidden_size:
            joint_optimizer_specs.append({'params': self.linear.parameters(), 'lr': self.lr_others})

        optimizer = torch.optim.AdamW(joint_optimizer_specs)

        lr_scheduler = transformers.get_linear_schedule_with_warmup(
            optimizer=optimizer,
            num_warmup_steps=self.num_warmup_steps,
            num_training_steps=self.num_training_steps
        )

        return [optimizer], [lr_scheduler]

    def on_train_start(self):
        self.logger.log_hyperparams(self.hparams)

    def training_step(self, batch, batch_idx):
        targets = torch.tensor(batch['targets'], device=self.device)

        if self.use_prototype_loss:
            if batch_idx == 0:
                self.prototype_loss = self.calculate_prototype_loss()
            self.log('prototype_loss', self.prototype_loss, on_epoch=True)

        logits, _ = self(batch)

        if self.loss == "BCE":
            train_loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, target=targets.float())
        else:
            train_loss = torch.nn.MultiLabelSoftMarginLoss()(input=torch.sigmoid(logits), target=targets)

        self.log('train_loss', train_loss, on_epoch=True)

        if self.use_prototype_loss:
            total_loss = train_loss + self.prototype_loss
        else:
            total_loss = train_loss

        return total_loss

    def forward(self, batch):
        attention_mask = batch["attention_masks"]
        input_ids = batch["input_ids"]
        token_type_ids = batch["token_type_ids"]

        if attention_mask.device != self.device:
            attention_mask = attention_mask.to(self.device)
            input_ids = input_ids.to(self.device)
            token_type_ids = token_type_ids.to(self.device)

        bert_output = self.bert(input_ids=input_ids,
                                attention_mask=attention_mask,
                                token_type_ids=token_type_ids)

        bert_vectors = bert_output.last_hidden_state

        if self.reduce_hidden_size:
            # apply linear layer to reduce token vector dimension
            token_vectors = self.linear(bert_vectors)
        else:
            token_vectors = bert_vectors

        if self.normalize is not None:
            token_vectors = nn.functional.normalize(token_vectors, p=2, dim=self.normalize)

        metadata = None
        if self.use_attention:

            attention_mask_from_tokens = utils.attention_mask_from_tokens(attention_mask, batch["tokens"])

            weighted_samples_per_class, attention_per_token_and_class = self.calculate_token_class_attention(
                token_vectors,
                self.attention_vectors,
                mask=attention_mask_from_tokens)

            if self.normalize is not None:
                weighted_samples_per_class = nn.functional.normalize(weighted_samples_per_class, p=2,
                                                                     dim=self.normalize)

            if self.use_cuda:
                weighted_samples_per_class = weighted_samples_per_class.cuda()
                self.num_prototypes_per_class = self.num_prototypes_per_class.cuda()

            weighted_samples_per_prototype = weighted_samples_per_class.repeat_interleave(
                self.num_prototypes_per_class
                    .long(), dim=1)

            if self.dot_product:
                score_per_prototype = torch.einsum('bs,abs->ab', self.prototype_vectors,
                                                   weighted_samples_per_prototype)
            else:
                score_per_prototype = -self.pairwise_dist(self.prototype_vectors.T,
                                                          weighted_samples_per_prototype.permute(0, 2, 1))

            metadata = attention_per_token_and_class, weighted_samples_per_prototype

        else:
            score_per_prototype = -torch.cdist(token_vectors.mean(dim=1), self.prototype_vectors)

        logits = self.get_logits_per_class(score_per_prototype)

        return logits, metadata

    def calculate_token_class_attention(self, batch_samples, class_attention_vectors, mask=None):
        if class_attention_vectors.device != batch_samples.device:
            class_attention_vectors = class_attention_vectors.to(batch_samples.device)

        score_per_token_and_class = torch.einsum('ikj,mj->imk', batch_samples, class_attention_vectors)

        if mask is not None:
            expanded_mask = mask.unsqueeze(dim=1).expand(mask.size(0), class_attention_vectors.size(0), mask.size(1))

            expanded_mask = F.pad(input=expanded_mask,
                                  pad=(0, score_per_token_and_class.shape[2] - expanded_mask.shape[2]),
                                  mode='constant', value=0)

            score_per_token_and_class = score_per_token_and_class.masked_fill(
                (expanded_mask == 0),
                float('-inf'))

        if self.use_sigmoid:
            attention_per_token_and_class = torch.sigmoid(score_per_token_and_class) / \
                                            score_per_token_and_class.shape[2]
        else:
            attention_per_token_and_class = F.softmax(score_per_token_and_class, dim=2)

        class_weighted_tokens = torch.einsum('ikjm,ikj->ikjm',
                                             batch_samples.unsqueeze(dim=1).expand(batch_samples.size(0),
                                                                                   self.num_classes,
                                                                                   batch_samples.size(1),
                                                                                   batch_samples.size(2)),
                                             attention_per_token_and_class)

        weighted_samples_per_class = class_weighted_tokens.sum(dim=2)

        return weighted_samples_per_class, attention_per_token_and_class

    def get_logits_per_class(self, score_per_prototype):
        if self.final_layer:
            if score_per_prototype.device != self.final_linear.device:
                score_per_prototype = score_per_prototype.to(self.final_linear.device)

            return torch.matmul(score_per_prototype, self.final_linear)

        else:
            batch_size = score_per_prototype.shape[0]

            fill_vector = torch.full((batch_size, self.num_classes, self.num_prototypes), fill_value=float("-inf"),
                                     dtype=score_per_prototype.dtype)
            if self.use_cuda:
                fill_vector = fill_vector.cuda()
                self.prototype_to_class_map = self.prototype_to_class_map.cuda()

            group_logits_by_class = fill_vector.scatter_(1,
                                                         self.prototype_to_class_map.unsqueeze(0).repeat(batch_size,
                                                                                                         1).unsqueeze(
                                                             1),
                                                         score_per_prototype.unsqueeze(1))

            max_logits_per_class = torch.max(group_logits_by_class, dim=2).values
            return max_logits_per_class

    def calculate_prototype_loss(self):
        prototype_loss = 100 / torch.tensor([torch.cdist(
            self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][:1],
            self.prototype_vectors[(self.prototype_to_class_map == i).nonzero().flatten()][1:]).min() for i in
                                             range(self.num_classes) if
                                             len((self.prototype_to_class_map == i).nonzero()) > 1]).sum()
        return prototype_loss

    def validation_step(self, batch, batch_idx):
        with torch.no_grad():
            targets = torch.tensor(batch['targets'], device=self.device)

            logits, _ = self(batch)

            for metric_name in self.train_metrics:
                metric = self.train_metrics[metric_name]
                metric(torch.sigmoid(logits), targets)

    def validation_epoch_end(self, outputs) -> None:
        for metric_name in self.train_metrics:
            metric = self.train_metrics[metric_name]
            self.log(f"val/{metric_name}", metric.compute())
            metric.reset()

    def test_step(self, batch, batch_idx):
        with torch.no_grad():
            targets = torch.tensor(batch['targets'], device=self.device)

            logits, _ = self(batch)
            preds = torch.sigmoid(logits)

            for metric_name in self.all_metrics:
                metric = self.all_metrics[metric_name]
                metric(preds, targets)

        return preds, targets

    def test_epoch_end(self, outputs) -> None:
        log_dir = self.logger.log_dir
        for metric_name in self.all_metrics:
            metric = self.all_metrics[metric_name]
            value = metric.compute()
            self.log(f"test/{metric_name}", value)

            with open(os.path.join(log_dir, 'test_metrics.txt'), 'a') as metrics_file:
                metrics_file.write(f"{metric_name}: {value}\n")

            metric.reset()

        predictions = torch.cat([out[0] for out in outputs])
        # numpy.save(os.path.join(self.logger.log_dir, "predictions"), predictions)

        targets = torch.cat([out[1] for out in outputs])
        # numpy.save(os.path.join(self.logger.log_dir, "targets"), targets)

        pr_auc = metrics.calculate_pr_auc(prediction=predictions, target=targets, num_classes=self.num_classes,
                                          device=self.device)

        with open(os.path.join(self.logger.log_dir, 'PR_AUC_score.txt'), 'w') as metrics_file:
            metrics_file.write(f"PR AUC: {pr_auc.cpu().numpy()}\n")