|
from typing import Optional, Any, Callable, List |
|
|
|
import torch |
|
import torchmetrics |
|
|
|
from torchmetrics.metric import Metric |
|
from torchmetrics import AUROC, PrecisionRecallCurve |
|
from torchmetrics.functional import auroc |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
import logging |
|
import numpy as np |
|
|
|
|
|
class PR_AUC(Metric): |
|
def __init__(self, num_classes, compute_on_step=False, dist_sync_on_step=False): |
|
super().__init__(compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step) |
|
self.add_state("prauc", default=[], dist_reduce_fx='cat') |
|
self.pr_curve = PrecisionRecallCurve(num_classes=num_classes).to(self.device) |
|
self.auc = torchmetrics.AUC().to(self.device) |
|
|
|
def update(self, prediction: torch.Tensor, target: torch.Tensor): |
|
precision, recall, thresholds = self.pr_curve(prediction, target) |
|
auc_values = [self.auc(r, p) for r, p in zip(recall, precision)] |
|
|
|
pr_auc = torch.mean(torch.tensor([v for v in auc_values if not v.isnan()])).to(self.device) |
|
self.prauc += [pr_auc.detach()] |
|
|
|
def compute(self): |
|
return torch.mean(self.prauc.detach()) |
|
|
|
|
|
class PR_AUCPerBucket(PR_AUC): |
|
def __init__(self, num_classes, bucket, compute_on_step=False, dist_sync_on_step=False): |
|
super().__init__(num_classes=len(bucket), compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step) |
|
self.bucket = set(bucket) |
|
self.num_classes = num_classes |
|
|
|
def update(self, prediction: torch.Tensor, target: torch.Tensor): |
|
|
|
mask = np.zeros((self.num_classes), dtype=bool) |
|
for c in range(self.num_classes): |
|
if c in self.bucket: |
|
mask[c] = True |
|
filtered_target = target[:, mask] |
|
filtered_preds = prediction[:, mask] |
|
|
|
if len((filtered_target > 0).nonzero()) > 0: |
|
precision, recall, thresholds = self.pr_curve(filtered_preds, filtered_target) |
|
auc_values = [self.auc(r, p) for r, p in zip(recall, precision)] |
|
|
|
pr_auc = torch.mean(torch.tensor([v for v in auc_values if not v.isnan()])).to(self.device) |
|
self.prauc += [pr_auc.detach()] |
|
|
|
|
|
def calculate_pr_auc(prediction: torch.Tensor, target: torch.Tensor, num_classes, device): |
|
pr_curve = PrecisionRecallCurve(num_classes=num_classes).to(device) |
|
auc = torchmetrics.AUC().to(device) |
|
|
|
precision, recall, thresholds = pr_curve(prediction, target) |
|
auc_values = [auc(r, p) for r, p in zip(recall, precision)] |
|
|
|
pr_auc = torch.mean(torch.tensor([v for v in auc_values if not v.isnan()])).to(device) |
|
return pr_auc.detach() |
|
|
|
|
|
class FilteredAUROC(AUROC): |
|
def compute(self) -> torch.Tensor: |
|
|
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
|
|
mask = np.ones((self.num_classes), dtype=bool) |
|
for c in range(self.num_classes): |
|
if torch.max(target[:, c]) == 0: |
|
mask[c] = False |
|
filtered_target = target[:, mask] |
|
filtered_preds = preds[:, mask] |
|
|
|
num_filtered_cols = np.count_nonzero(mask == False) |
|
logging.info(f"{num_filtered_cols} columns not considered for ROC AUC calculation!") |
|
|
|
return _auroc_compute( |
|
filtered_preds, |
|
filtered_target, |
|
self.mode, |
|
self.num_classes - num_filtered_cols, |
|
self.pos_label, |
|
self.average, |
|
self.max_fpr, |
|
) |
|
|
|
|
|
class FilteredAUROCPerBucket(AUROC): |
|
def __init__( |
|
self, |
|
bucket: List[int], |
|
num_classes: Optional[int] = None, |
|
pos_label: Optional[int] = None, |
|
average: Optional[str] = "macro", |
|
max_fpr: Optional[float] = None, |
|
compute_on_step: bool = True, |
|
dist_sync_on_step: bool = False, |
|
process_group: Optional[Any] = None, |
|
dist_sync_fn: Callable = None |
|
): |
|
super().__init__(num_classes, pos_label, average, max_fpr, compute_on_step, dist_sync_on_step, process_group, |
|
dist_sync_fn) |
|
self.bucket = set(bucket) |
|
|
|
def compute(self) -> torch.Tensor: |
|
|
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
|
|
mask = np.zeros((self.num_classes), dtype=bool) |
|
for c in range(self.num_classes): |
|
if torch.max(target[:, c]) > 0 and c in self.bucket: |
|
mask[c] = True |
|
filtered_target = target[:, mask] |
|
filtered_preds = preds[:, mask] |
|
|
|
num_filtered_cols = np.count_nonzero(mask == False) |
|
logging.info(f"{num_filtered_cols} columns not considered for ROC AUC calculation!") |
|
|
|
return _auroc_compute( |
|
filtered_preds, |
|
filtered_target, |
|
self.mode, |
|
self.num_classes - num_filtered_cols, |
|
self.pos_label, |
|
self.average, |
|
self.max_fpr, |
|
) |
|
|