royleibov commited on
Commit
1e47f46
1 Parent(s): 8a3c819

Add ZipNN stuff

Browse files
Files changed (1) hide show
  1. README.md +64 -2
README.md CHANGED
@@ -12,8 +12,67 @@ widget:
12
  - role: user
13
  content: Can you provide ways to eat combinations of bananas and dragonfruits?
14
  library_name: transformers
 
 
15
  ---
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ## Model Summary
18
 
19
  Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
@@ -141,16 +200,19 @@ After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this s
141
  ```python
142
  import torch
143
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
 
 
144
 
145
  torch.random.manual_seed(0)
146
 
147
  model = AutoModelForCausalLM.from_pretrained(
148
- "microsoft/Phi-3.5-mini-instruct",
149
  device_map="cuda",
150
  torch_dtype="auto",
151
  trust_remote_code=True,
152
  )
153
- tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
154
 
155
  messages = [
156
  {"role": "system", "content": "You are a helpful AI assistant."},
 
12
  - role: user
13
  content: Can you provide ways to eat combinations of bananas and dragonfruits?
14
  library_name: transformers
15
+ base_model:
16
+ - microsoft/Phi-3.5-mini-instruct
17
  ---
18
 
19
+ # Disclaimer and Requirements
20
+
21
+ This model is a clone of [**microsoft/Phi-3.5-mini-instruct**](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~3GB in storage and potentially ~1PB in data transfer **monthly**.
22
+
23
+ ### Requirement
24
+
25
+ In order to use the model, ZipNN is necessary:
26
+ ```bash
27
+ pip install zipnn
28
+ ```
29
+ ### Use This Model
30
+ ```python
31
+ # Use a pipeline as a high-level helper
32
+ from transformers import pipeline
33
+ from zipnn import zipnn_hf
34
+
35
+ zipnn_hf()
36
+
37
+ messages = [
38
+ {"role": "user", "content": "Who are you?"},
39
+ ]
40
+ pipe = pipeline("text-generation", model="royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed")
41
+ pipe(messages)
42
+ ```
43
+ ```python
44
+ # Load model directly
45
+ import torch
46
+ from transformers import AutoModelForCausalLM, AutoTokenizer
47
+ from zipnn import zipnn_hf
48
+
49
+ zipnn_hf()
50
+
51
+ torch.random.manual_seed(0)
52
+
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ "royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed",
55
+ device_map="cuda",
56
+ torch_dtype="auto",
57
+ trust_remote_code=True,
58
+ )
59
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
60
+ ```
61
+ ### ZipNN
62
+ ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
63
+
64
+ To compress the cached model, simply run:
65
+ ```bash
66
+ python zipnn_compress_path.py safetensors --model royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed --hf_cache
67
+ ```
68
+
69
+ The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
70
+
71
+ To decompress manualy, simply run:
72
+ ```bash
73
+ python zipnn_decompress_path.py --model royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed --hf_cache
74
+ ```
75
+
76
  ## Model Summary
77
 
78
  Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures.
 
200
  ```python
201
  import torch
202
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
203
+ from zipnn import zipnn_hf
204
+
205
+ zipnn_hf()
206
 
207
  torch.random.manual_seed(0)
208
 
209
  model = AutoModelForCausalLM.from_pretrained(
210
+ "royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed",
211
  device_map="cuda",
212
  torch_dtype="auto",
213
  trust_remote_code=True,
214
  )
215
+ tokenizer = AutoTokenizer.from_pretrained("royleibov/Phi-3.5-mini-instruct-ZipNN-Compressed")
216
 
217
  messages = [
218
  {"role": "system", "content": "You are a helpful AI assistant."},