File size: 8,432 Bytes
3290550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import click
import cooler
import warnings
import numpy as np
from torch import nn
from tqdm import tqdm
from torch.cuda.amp import autocast
from importlib_resources import files
from polaris.utils.util_loop import bedpewriter
from polaris.model.polarisnet import polarisnet
from scipy.sparse import coo_matrix
from scipy.sparse import SparseEfficiencyWarning
warnings.filterwarnings("ignore", category=SparseEfficiencyWarning)

def getLocal(mat, i, jj, w, N):
    if i >= 0 and jj >= 0 and i+w <= N and jj+w <= N:
        mat = mat[i:i+w,jj:jj+w].toarray()
        # print(f"global: {mat.shape}")
        return mat[None,...]
    # pad_width = ((up, down), (left, right))
    slice_pos = [[i, i+w], [jj, jj+w]]
    pad_width = [[0, 0], [0, 0]]
    if i < 0:
        pad_width[0][0] = -i
        slice_pos[0][0] = 0
    if jj < 0:
        pad_width[1][0] = -jj
        slice_pos[1][0] = 0
    if i+w > N:
        pad_width[0][1] = i+w-N
        slice_pos[0][1] = N
    if jj+w > N:
        pad_width[1][1] = jj+w-N
        slice_pos[1][1] = N
    _mat = mat[slice_pos[0][0]:slice_pos[0][1],slice_pos[1][0]:slice_pos[1][1]].toarray()
    padded_mat = np.pad(_mat, pad_width, mode='constant', constant_values=0)
    # print(f"global: {padded_mat.shape}",slice_pos, pad_width)
    return padded_mat[None,...]

def upperCoo2symm(row,col,data,N=None):
    # print(np.max(row),np.max(col),N)
    if N:
        shape=(N,N)
    else:
        shape=(row.max() + 1,col.max() + 1)

    sparse_matrix = coo_matrix((data, (row, col)), shape=shape)
    symm = sparse_matrix + sparse_matrix.T
    diagVal = symm.diagonal(0)/2
    symm = symm.tocsr()
    symm.setdiag(diagVal)
    return symm

def processCoolFile(coolfile, cchrom):
    extent = coolfile.extent(cchrom)
    N = extent[1] - extent[0]
    ccdata = coolfile.matrix(balance=True, sparse=True, as_pixels=True).fetch(cchrom)
    ccdata['balanced'] = ccdata['balanced'].fillna(0)
    ccdata['bin1_id'] -= extent[0]
    ccdata['bin2_id'] -= extent[0]
        
    ccdata['distance'] = ccdata['bin2_id'] - ccdata['bin1_id']
    d_means = ccdata.groupby('distance')['balanced'].transform('mean')
    ccdata['oe'] = ccdata['balanced'] / d_means
    ccdata['oe'] = ccdata['oe'].fillna(0)
    ccdata['oe'] = ccdata['oe'] / ccdata['oe'].max()
    oeMat = upperCoo2symm(ccdata['bin1_id'].ravel(), ccdata['bin2_id'].ravel(), ccdata['oe'].ravel(), N)
           
    return oeMat, N

@click.command()
@click.option('--batchsize', type=int, default=16, help='Batch size [16]')
@click.option('--cpu', type=bool, default=False, help='Use CPU [False]')
@click.option('--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
@click.option('--chrom', type=str, default=None, help='Comma separated chroms')
@click.option('--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs')
@click.option('--resol',type=int,default=500,help ='Resolution')
@click.option('--image',type=int,default=1024,help ='Resolution')
@click.option('--center_size',type=int,default=224,help ='Resolution')
@click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
@click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates')
def dev(batchsize, cpu, gpu, chrom, max_distance, resol, input, output, image, center_size):
    """ *development function* Coming soon...
    """
    print('polaris loop dev START :) ')
    
    # center_size = 224
    # center_size = image // 2
    start_idx = (image - center_size) // 2
    end_idx = (image + center_size) // 2
    slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
    slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
    
    max_distance_bin=max_distance//resol

    loopwriter = bedpewriter(output,resol,max_distance)
    
    if cpu:
        assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
        gpu = ['None']
        device = torch.device("cpu")
        print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
    else:
        if torch.cuda.is_available():
            if gpu is not None:
                print("Using the specified GPU: " + gpu)
                gpu=[int(i) for i in gpu.split(',')]
                device = torch.device(f"cuda:{gpu[0]}")
            else:
                gpuIdx = torch.cuda.current_device()
                device = torch.device(gpuIdx)
                print("Automatically selected GPU: " + str(gpuIdx))
                gpu=[gpu]
        else:
            device = torch.device("cpu")
            gpu = ['None']
            cpu = True
            print('GPU is not available!')
            print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
           
    coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
    modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
    _modelstate = torch.load(modelstate, map_location=device.type)
    parameters = _modelstate['parameters']

    if chrom is None:
        chrom =coolfile.chromnames
    else:
        chrom = chrom.split(',')
    for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX']: # 'Y','chrY','X','chrX'
        if rmchr in chrom:
            chrom.remove(rmchr)              
    print(f"\nAnalysing chroms: {chrom}")
    
    model = polarisnet(
            image_size=parameters['image_size'], 
            in_channels=parameters['in_channels'], 
            out_channels=parameters['out_channels'],
            embed_dim=parameters['embed_dim'], 
            depths=parameters['depths'],
            channels=parameters['channels'], 
            num_heads=parameters['num_heads'], 
            drop=parameters['drop'], 
            drop_path=parameters['drop_path'], 
            pos_embed=parameters['pos_embed']
    ).to(device)
    model.load_state_dict(_modelstate['model_state_dict'])
    if not cpu and len(gpu) > 1:
        model = nn.DataParallel(model, device_ids=gpu) 
    model.eval()
        
    chrom = tqdm(chrom, dynamic_ncols=True)
    for _chrom in chrom:
        chrom.desc = f"[analyzing {_chrom}]"

        oeMat, N = processCoolFile(coolfile, _chrom)
        start_point = -(image - center_size) // 2
        joffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[np.newaxis, :], image, axis=0)
        ioffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[:, np.newaxis], image, axis=1)
        data, i_list, j_list = [], [], []
        
        for i in range(start_point, N - image - start_point, center_size):
            for j in range(0, max_distance_bin, center_size):
                jj = j + i
                # if jj + w <= N and i + w <= N:
                _oeMat = getLocal(oeMat, i, jj, image, N)
                if np.sum(_oeMat == 0) <= (image*image*0.9):
                    data.append(_oeMat)
                    i_list.append(i + ioffset)
                    j_list.append(jj + joffset)

            while len(data) >= batchsize or (i + center_size > N - image - start_point and len(data) > 0):
                bin_i = torch.tensor(np.stack(i_list[:batchsize], axis=0)).to(device)
                bin_j = torch.tensor(np.stack(j_list[:batchsize], axis=0)).to(device)
                targetX = torch.tensor(np.stack(data[:batchsize], axis=0)).to(device)
                bin_i = bin_i*resol
                bin_j = bin_j*resol

                data = data[batchsize:]
                i_list = i_list[batchsize:]
                j_list = j_list[batchsize:]

                print(targetX.shape)
                print(bin_i.shape)
                print(bin_j.shape)

                with torch.no_grad():
                    with autocast():
                        pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
                        loop = torch.nonzero(pred>0.5).flatten().cpu()
                        prob = pred[loop].cpu().numpy().flatten().tolist()
                        frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
                        frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()

                    loopwriter.write(_chrom,frag1,frag2,prob)


if __name__ == '__main__':
    dev()