Polaris / polaris /loopDev.py
rr-ss's picture
Upload folder using huggingface_hub
3290550 verified
raw
history blame
8.43 kB
import torch
import click
import cooler
import warnings
import numpy as np
from torch import nn
from tqdm import tqdm
from torch.cuda.amp import autocast
from importlib_resources import files
from polaris.utils.util_loop import bedpewriter
from polaris.model.polarisnet import polarisnet
from scipy.sparse import coo_matrix
from scipy.sparse import SparseEfficiencyWarning
warnings.filterwarnings("ignore", category=SparseEfficiencyWarning)
def getLocal(mat, i, jj, w, N):
if i >= 0 and jj >= 0 and i+w <= N and jj+w <= N:
mat = mat[i:i+w,jj:jj+w].toarray()
# print(f"global: {mat.shape}")
return mat[None,...]
# pad_width = ((up, down), (left, right))
slice_pos = [[i, i+w], [jj, jj+w]]
pad_width = [[0, 0], [0, 0]]
if i < 0:
pad_width[0][0] = -i
slice_pos[0][0] = 0
if jj < 0:
pad_width[1][0] = -jj
slice_pos[1][0] = 0
if i+w > N:
pad_width[0][1] = i+w-N
slice_pos[0][1] = N
if jj+w > N:
pad_width[1][1] = jj+w-N
slice_pos[1][1] = N
_mat = mat[slice_pos[0][0]:slice_pos[0][1],slice_pos[1][0]:slice_pos[1][1]].toarray()
padded_mat = np.pad(_mat, pad_width, mode='constant', constant_values=0)
# print(f"global: {padded_mat.shape}",slice_pos, pad_width)
return padded_mat[None,...]
def upperCoo2symm(row,col,data,N=None):
# print(np.max(row),np.max(col),N)
if N:
shape=(N,N)
else:
shape=(row.max() + 1,col.max() + 1)
sparse_matrix = coo_matrix((data, (row, col)), shape=shape)
symm = sparse_matrix + sparse_matrix.T
diagVal = symm.diagonal(0)/2
symm = symm.tocsr()
symm.setdiag(diagVal)
return symm
def processCoolFile(coolfile, cchrom):
extent = coolfile.extent(cchrom)
N = extent[1] - extent[0]
ccdata = coolfile.matrix(balance=True, sparse=True, as_pixels=True).fetch(cchrom)
ccdata['balanced'] = ccdata['balanced'].fillna(0)
ccdata['bin1_id'] -= extent[0]
ccdata['bin2_id'] -= extent[0]
ccdata['distance'] = ccdata['bin2_id'] - ccdata['bin1_id']
d_means = ccdata.groupby('distance')['balanced'].transform('mean')
ccdata['oe'] = ccdata['balanced'] / d_means
ccdata['oe'] = ccdata['oe'].fillna(0)
ccdata['oe'] = ccdata['oe'] / ccdata['oe'].max()
oeMat = upperCoo2symm(ccdata['bin1_id'].ravel(), ccdata['bin2_id'].ravel(), ccdata['oe'].ravel(), N)
return oeMat, N
@click.command()
@click.option('--batchsize', type=int, default=16, help='Batch size [16]')
@click.option('--cpu', type=bool, default=False, help='Use CPU [False]')
@click.option('--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
@click.option('--chrom', type=str, default=None, help='Comma separated chroms')
@click.option('--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs')
@click.option('--resol',type=int,default=500,help ='Resolution')
@click.option('--image',type=int,default=1024,help ='Resolution')
@click.option('--center_size',type=int,default=224,help ='Resolution')
@click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
@click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates')
def dev(batchsize, cpu, gpu, chrom, max_distance, resol, input, output, image, center_size):
""" *development function* Coming soon...
"""
print('polaris loop dev START :) ')
# center_size = 224
# center_size = image // 2
start_idx = (image - center_size) // 2
end_idx = (image + center_size) // 2
slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
max_distance_bin=max_distance//resol
loopwriter = bedpewriter(output,resol,max_distance)
if cpu:
assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
gpu = ['None']
device = torch.device("cpu")
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
else:
if torch.cuda.is_available():
if gpu is not None:
print("Using the specified GPU: " + gpu)
gpu=[int(i) for i in gpu.split(',')]
device = torch.device(f"cuda:{gpu[0]}")
else:
gpuIdx = torch.cuda.current_device()
device = torch.device(gpuIdx)
print("Automatically selected GPU: " + str(gpuIdx))
gpu=[gpu]
else:
device = torch.device("cpu")
gpu = ['None']
cpu = True
print('GPU is not available!')
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
_modelstate = torch.load(modelstate, map_location=device.type)
parameters = _modelstate['parameters']
if chrom is None:
chrom =coolfile.chromnames
else:
chrom = chrom.split(',')
for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX']: # 'Y','chrY','X','chrX'
if rmchr in chrom:
chrom.remove(rmchr)
print(f"\nAnalysing chroms: {chrom}")
model = polarisnet(
image_size=parameters['image_size'],
in_channels=parameters['in_channels'],
out_channels=parameters['out_channels'],
embed_dim=parameters['embed_dim'],
depths=parameters['depths'],
channels=parameters['channels'],
num_heads=parameters['num_heads'],
drop=parameters['drop'],
drop_path=parameters['drop_path'],
pos_embed=parameters['pos_embed']
).to(device)
model.load_state_dict(_modelstate['model_state_dict'])
if not cpu and len(gpu) > 1:
model = nn.DataParallel(model, device_ids=gpu)
model.eval()
chrom = tqdm(chrom, dynamic_ncols=True)
for _chrom in chrom:
chrom.desc = f"[analyzing {_chrom}]"
oeMat, N = processCoolFile(coolfile, _chrom)
start_point = -(image - center_size) // 2
joffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[np.newaxis, :], image, axis=0)
ioffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[:, np.newaxis], image, axis=1)
data, i_list, j_list = [], [], []
for i in range(start_point, N - image - start_point, center_size):
for j in range(0, max_distance_bin, center_size):
jj = j + i
# if jj + w <= N and i + w <= N:
_oeMat = getLocal(oeMat, i, jj, image, N)
if np.sum(_oeMat == 0) <= (image*image*0.9):
data.append(_oeMat)
i_list.append(i + ioffset)
j_list.append(jj + joffset)
while len(data) >= batchsize or (i + center_size > N - image - start_point and len(data) > 0):
bin_i = torch.tensor(np.stack(i_list[:batchsize], axis=0)).to(device)
bin_j = torch.tensor(np.stack(j_list[:batchsize], axis=0)).to(device)
targetX = torch.tensor(np.stack(data[:batchsize], axis=0)).to(device)
bin_i = bin_i*resol
bin_j = bin_j*resol
data = data[batchsize:]
i_list = i_list[batchsize:]
j_list = j_list[batchsize:]
print(targetX.shape)
print(bin_i.shape)
print(bin_j.shape)
with torch.no_grad():
with autocast():
pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
loop = torch.nonzero(pred>0.5).flatten().cpu()
prob = pred[loop].cpu().numpy().flatten().tolist()
frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
loopwriter.write(_chrom,frag1,frag2,prob)
if __name__ == '__main__':
dev()