rr-ss commited on
Commit
05ebc17
·
verified ·
1 Parent(s): 63fa912

Upload folder using huggingface_hub

Browse files
LICENSE CHANGED
@@ -1,6 +1,6 @@
1
  MIT License
2
 
3
- Copyright (c) 2022 ai4nucleome
4
 
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
  of this software and associated documentation files (the "Software"), to deal
 
1
  MIT License
2
 
3
+ Copyright (c) 2024 ai4nucleome
4
 
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
  of this software and associated documentation files (the "Software"), to deal
README.md CHANGED
@@ -19,101 +19,12 @@ tags:
19
  <!-- <img src="https://img.shields.io/badge/dependencies-tested-green"> -->
20
  </a>
21
 
 
22
 
23
  🌟 **Polaris** is a versatile and efficient command line tool tailored for rapid and accurate chromatin loop detectionfrom from contact maps generated by various assays, including bulk Hi-C, scHi-C, Micro-C, and DNA SPRITE. Polaris is particularly well-suited for analyzing **sparse scHi-C data and low-coverage datasets**.
24
 
25
- <div style="text-align: center;">
26
- <img src="./doc/Polaris.png" alt="Polaris Model" title="Polaris Model" width="600">
27
- </div>
28
-
29
-
30
- - Using examples for single cell Hi-C and bulk cell Hi-C loop annotations are under [**example folder**](https://github.com/ai4nucleome/Polaris/tree/master/example).
31
- - The scripts and data to **reproduce our analysis** can be found at: [**Polaris Reproducibility**](https://zenodo.org/records/14294273).
32
-
33
- > ❗️<b>NOTE❗️:</b> We suggest users run Polaris on <b>GPU</b>.
34
- > You can run Polaris on CPU for loop annotations, but it is much slower than on GPU.
35
-
36
- > ❗️**NOTE❗️:** If you encounter a `CUDA OUT OF MEMORY` error, please:
37
- > - Check your GPU's status and available memory.
38
- > - Reduce the --batchsize parameter. (The default value of 128 requires approximately 36GB of CUDA memory. Setting it to 24 will reduce the requirement to less than 10GB.)
39
-
40
- ## Documentation
41
- 📝 **Extensive documentation** can be found at: [Polaris Doc](https://nucleome-polaris.readthedocs.io/en/latest/).
42
-
43
- ## Installation
44
- Polaris is developed and tested on Linux machines with python3.9 and relies on several libraries including pytorch, scipy, etc.
45
- We **strongly recommend** that you install Polaris in a virtual environment.
46
-
47
- We suggest users using [conda](https://anaconda.org/) to create a virtual environment for it (It should also work without using conda, i.e. with pip). You can run the command snippets below to install Polaris:
48
-
49
- ```bash
50
- git clone https://github.com/ai4nucleome/Polaris.git
51
- cd Polaris
52
- conda create -n polaris python=3.9
53
- conda activate polaris
54
- ```
55
- -------
56
- ### ❗️Important Note❗️: Downloading Polaris Network Weights
57
-
58
- The Polaris repository utilizes Git Large File Storage (Git-LFS) to host its pre-trained model weight files. Standard `git clone` operations **will not** automatically download these large files unless Git-LFS is installed and configured.
59
-
60
- To resolve this, please follow one of the methods below:
61
-
62
- #### Method 1: Manual Download via Browser
63
-
64
- 1. Directly download the pre-trained model weights (`sft_loop.pt`) from the [Polaris model directory](https://github.com/ai4nucleome/Polaris/blob/master/polaris/model/sft_loop.pt).
65
- 2. Save the file to the directory:
66
- ```bash
67
- Polaris/polaris/model/
68
- ```
69
- #### Method 2: Install Git-LFS
70
- 1. Install Git-LFS by following the official instructions: [Git-LFS Installation Guide](https://git-lfs.com/).
71
-
72
- 2. After installation, either:
73
-
74
- Re-clone the repository:
75
-
76
- ```bash
77
- git clone https://github.com/ai4nucleome/Polaris.git
78
- ```
79
- OR, if the repository is already cloned, run:
80
-
81
- ```bash
82
- git lfs pull
83
- ```
84
- This ensures all large files, including model weights, are retrieved.
85
- ----------
86
-
87
- Install [PyTorch](https://pytorch.org/get-started/locally/) as described on their website. It might be the following command depending on your cuda version:
88
-
89
- ```bash
90
- pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu121
91
- ```
92
- Install Polaris:
93
- ```bash
94
- pip install --use-pep517 --editable .
95
- ```
96
- If fail, please try `python setup build` and `python setup install` first.
97
-
98
- The installation requires network access to download libraries. Usually, the installation will finish within 5 minutes. The installation time is longer if network access is slow and/or unstable.
99
-
100
- ## Quick Start for Loop Annotation
101
- ```bash
102
- polaris loop pred -i [input mcool file] -o [output path of annotated loops]
103
- ```
104
- It outputs predicted loops from the input contact map at 5kb resolution.
105
- ### output format
106
- It contains tab separated fields as follows:
107
- ```
108
- Chr1 Start1 End1 Chr2 Start2 End2 Score
109
- ```
110
- | Field | Detail |
111
- |:-------------:|:-----------------------------------------------------------------------:|
112
- | Chr1/Chr2 | chromosome names |
113
- | Start1/Start2 | start genomic coordinates |
114
- | End1/End2 | end genomic coordinates (i.e. End1=Start1+resol) |
115
- | Score | Polaris's loop score [0~1] |
116
-
117
 
118
  ## Citation:
119
  Yusen Hou, Audrey Baguette, Mathieu Blanchette*, & Yanlin Zhang*. __A versatile tool for chromatin loop annotation in bulk and single-cell Hi-C data__. _bioRxiv_, 2024. [Paper](https://doi.org/10.1101/2024.12.24.630215)
@@ -128,6 +39,6 @@ Yusen Hou, Audrey Baguette, Mathieu Blanchette*, & Yanlin Zhang*. __A versatile
128
  ```
129
 
130
  ## 📩 Contact
131
- A GitHub issue is preferable for all problems related to using Polaris.
132
 
133
  For other concerns, please email Yusen Hou or Yanlin Zhang ([email protected], [email protected]).
 
19
  <!-- <img src="https://img.shields.io/badge/dependencies-tested-green"> -->
20
  </a>
21
 
22
+ ### See https://github.com/ai4nucleome/Polaris for more details.
23
 
24
  🌟 **Polaris** is a versatile and efficient command line tool tailored for rapid and accurate chromatin loop detectionfrom from contact maps generated by various assays, including bulk Hi-C, scHi-C, Micro-C, and DNA SPRITE. Polaris is particularly well-suited for analyzing **sparse scHi-C data and low-coverage datasets**.
25
 
26
+ ## [📝Documentation](https://nucleome-polaris.readthedocs.io/en/latest/)
27
+ **Detailed documentation** can be found at: [Polaris Doc](https://nucleome-polaris.readthedocs.io/en/latest/).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Citation:
30
  Yusen Hou, Audrey Baguette, Mathieu Blanchette*, & Yanlin Zhang*. __A versatile tool for chromatin loop annotation in bulk and single-cell Hi-C data__. _bioRxiv_, 2024. [Paper](https://doi.org/10.1101/2024.12.24.630215)
 
39
  ```
40
 
41
  ## 📩 Contact
42
+ A [GitHub issue](https://github.com/ai4nucleome/Polaris/issues) is preferable for all problems related to using Polaris.
43
 
44
  For other concerns, please email Yusen Hou or Yanlin Zhang ([email protected], [email protected]).
example/APA/GM12878_250M_chr151617_loops.pileup.png CHANGED
example/CLI_walkthrough.ipynb CHANGED
@@ -27,8 +27,8 @@
27
  "\n",
28
  " Polaris\n",
29
  "\n",
30
- " A Versatile Tool for Chromatin Loop Annotation in Bulk and Single-cell Hi-C\n",
31
- " Data\n",
32
  "\n",
33
  "Options:\n",
34
  " --help Show this message and exit.\n",
@@ -80,10 +80,10 @@
80
  " --help Show this message and exit.\n",
81
  "\n",
82
  "Commands:\n",
83
- " dev *development function* Coming soon...\n",
84
- " pool Call loops from loop candidates by clustering\n",
85
- " pred Predict loops from input contact map directly\n",
86
- " score Predict loop score for each pixel in the input contact map\n"
87
  ]
88
  }
89
  ],
@@ -102,7 +102,7 @@
102
  },
103
  {
104
  "cell_type": "code",
105
- "execution_count": 6,
106
  "metadata": {},
107
  "outputs": [
108
  {
@@ -120,6 +120,7 @@
120
  "\n",
121
  "Commands:\n",
122
  " cool2bcool covert a .mcool file to a .bcool file\n",
 
123
  " pileup 2D pileup contact maps around given foci\n"
124
  ]
125
  }
 
27
  "\n",
28
  " Polaris\n",
29
  "\n",
30
+ " A Versatile Framework for Chromatin Loop Annotation in Bulk and Single-cell\n",
31
+ " Hi-C Data\n",
32
  "\n",
33
  "Options:\n",
34
  " --help Show this message and exit.\n",
 
80
  " --help Show this message and exit.\n",
81
  "\n",
82
  "Commands:\n",
83
+ " pool Call loops from loop candidates by clustering\n",
84
+ " pred Predict loops from input contact map directly\n",
85
+ " score Predict loop score for each pixel in the input contact map\n",
86
+ " scorelf *development* Score Pixels for Very Large mcool (>30GB) ...\n"
87
  ]
88
  }
89
  ],
 
102
  },
103
  {
104
  "cell_type": "code",
105
+ "execution_count": 3,
106
  "metadata": {},
107
  "outputs": [
108
  {
 
120
  "\n",
121
  "Commands:\n",
122
  " cool2bcool covert a .mcool file to a .bcool file\n",
123
+ " depth Calculate intra-chromosomal contacts with bin distance >=...\n",
124
  " pileup 2D pileup contact maps around given foci\n"
125
  ]
126
  }
example/README.md CHANGED
@@ -10,6 +10,11 @@ You can re-run **Polaris** to reproduce these results by following the commands
10
 
11
  ## Loop Prediction on GM12878 (250M Valid Read Pairs)
12
 
 
 
 
 
 
13
  ```bash
14
  polaris loop pred --chrom chr15,chr16,chr17 -i ./loop_annotation/GM12878_250M.bcool -o ./loop_annotation/GM12878_250M_chr151617_loops.bedpe
15
  ```
 
10
 
11
  ## Loop Prediction on GM12878 (250M Valid Read Pairs)
12
 
13
+ You can download example data from the [Hugging Face repo of Polaris](https://huggingface.co/rr-ss/Polaris/resolve/main/example/loop_annotation/GM12878_250M.bcool?download=true) by runing:
14
+ ```bash
15
+ wget https://huggingface.co/rr-ss/Polaris/resolve/main/example/loop_annotation/GM12878_250M.bcool?download=true -O "./loop_annotation/GM12878_250M.bcool"
16
+ ```
17
+ And run following code to annotate loops from the example data:
18
  ```bash
19
  polaris loop pred --chrom chr15,chr16,chr17 -i ./loop_annotation/GM12878_250M.bcool -o ./loop_annotation/GM12878_250M_chr151617_loops.bedpe
20
  ```
example/loop_annotation/GM12878_250M_chr151617_loop_score.bedpe CHANGED
The diff for this file is too large to render. See raw diff
 
example/loop_annotation/GM12878_250M_chr151617_loops.bedpe CHANGED
The diff for this file is too large to render. See raw diff
 
example/loop_annotation/GM12878_250M_chr151617_loops_method2.bedpe CHANGED
The diff for this file is too large to render. See raw diff
 
example/loop_annotation/loop_annotation.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
polaris/loop.py CHANGED
@@ -36,7 +36,7 @@ def rhoDelta(data,resol,dc,radius):
36
  except ValueError as e:
37
  if "Found array with 0 sample(s)" in str(e):
38
  print("#"*88,'\n#')
39
- print("#\033[91m Error!!! The data is too sparse. Please increase the value of: [t]\033[0m\n#")
40
  print("#"*88,'\n')
41
  sys.exit(1)
42
  else:
@@ -76,12 +76,11 @@ def rhoDelta(data,resol,dc,radius):
76
  else:
77
  data['rhos']=[]
78
  data['deltas']=[]
79
-
80
  return data
81
 
82
  def pool(data,dc,resol,mindelta,t,output,radius,refine=True):
83
  ccs = set(data.iloc[:,0])
84
-
85
  if data.shape[0] == 0:
86
  print("#"*88,'\n#')
87
  print("#\033[91m Error!!! The file is empty. Please check your file.\033[0m\n#")
 
36
  except ValueError as e:
37
  if "Found array with 0 sample(s)" in str(e):
38
  print("#"*88,'\n#')
39
+ print("#\033[91m Error!!! The data is too sparse. Please decrease the value of: [t]\033[0m\n#")
40
  print("#"*88,'\n')
41
  sys.exit(1)
42
  else:
 
76
  else:
77
  data['rhos']=[]
78
  data['deltas']=[]
 
79
  return data
80
 
81
  def pool(data,dc,resol,mindelta,t,output,radius,refine=True):
82
  ccs = set(data.iloc[:,0])
83
+
84
  if data.shape[0] == 0:
85
  print("#"*88,'\n#')
86
  print("#\033[91m Error!!! The file is empty. Please check your file.\033[0m\n#")
polaris/loopLF.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import click
3
+ import cooler
4
+ import warnings
5
+ import numpy as np
6
+ from torch import nn
7
+ from tqdm import tqdm
8
+ from torch.cuda.amp import autocast
9
+ from importlib_resources import files
10
+ from polaris.utils.util_loop import bedpewriter
11
+ from polaris.model.polarisnet import polarisnet
12
+ from scipy.sparse import coo_matrix
13
+ from scipy.sparse import SparseEfficiencyWarning
14
+ warnings.filterwarnings("ignore", category=SparseEfficiencyWarning)
15
+
16
+ def getLocal(mat, i, jj, w, N):
17
+ if i >= 0 and jj >= 0 and i+w <= N and jj+w <= N:
18
+ mat = mat[i:i+w,jj:jj+w].toarray()
19
+ # print(f"global: {mat.shape}")
20
+ return mat[None,...]
21
+ # pad_width = ((up, down), (left, right))
22
+ slice_pos = [[i, i+w], [jj, jj+w]]
23
+ pad_width = [[0, 0], [0, 0]]
24
+ if i < 0:
25
+ pad_width[0][0] = -i
26
+ slice_pos[0][0] = 0
27
+ if jj < 0:
28
+ pad_width[1][0] = -jj
29
+ slice_pos[1][0] = 0
30
+ if i+w > N:
31
+ pad_width[0][1] = i+w-N
32
+ slice_pos[0][1] = N
33
+ if jj+w > N:
34
+ pad_width[1][1] = jj+w-N
35
+ slice_pos[1][1] = N
36
+ _mat = mat[slice_pos[0][0]:slice_pos[0][1],slice_pos[1][0]:slice_pos[1][1]].toarray()
37
+ padded_mat = np.pad(_mat, pad_width, mode='constant', constant_values=0)
38
+ # print(f"global: {padded_mat.shape}",slice_pos, pad_width)
39
+ return padded_mat[None,...]
40
+
41
+ def upperCoo2symm(row,col,data,N=None):
42
+ # print(np.max(row),np.max(col),N)
43
+ if N:
44
+ shape=(N,N)
45
+ else:
46
+ shape=(row.max() + 1,col.max() + 1)
47
+
48
+ sparse_matrix = coo_matrix((data, (row, col)), shape=shape)
49
+ symm = sparse_matrix + sparse_matrix.T
50
+ diagVal = symm.diagonal(0)/2
51
+ symm = symm.tocsr()
52
+ symm.setdiag(diagVal)
53
+ return symm
54
+
55
+ def processCoolFile(coolfile, cchrom, raw=False):
56
+ extent = coolfile.extent(cchrom)
57
+ N = extent[1] - extent[0]
58
+ if raw:
59
+ ccdata = coolfile.matrix(balance=False, sparse=True, as_pixels=True).fetch(cchrom)
60
+ v='count'
61
+ else:
62
+ ccdata = coolfile.matrix(balance=True, sparse=True, as_pixels=True).fetch(cchrom)
63
+ v='balanced'
64
+ ccdata['bin1_id'] -= extent[0]
65
+ ccdata['bin2_id'] -= extent[0]
66
+
67
+ ccdata['distance'] = ccdata['bin2_id'] - ccdata['bin1_id']
68
+ d_means = ccdata.groupby('distance')[v].transform('mean')
69
+ ccdata[v] = ccdata[v].fillna(0)
70
+
71
+ ccdata['oe'] = ccdata[v] / d_means
72
+ ccdata['oe'] = ccdata['oe'].fillna(0)
73
+ ccdata['oe'] = ccdata['oe'] / ccdata['oe'].max()
74
+ oeMat = upperCoo2symm(ccdata['bin1_id'].ravel(), ccdata['bin2_id'].ravel(), ccdata['oe'].ravel(), N)
75
+
76
+ return oeMat, N
77
+
78
+ @click.command()
79
+ @click.option('-b','--batchsize', type=int, default=128, help='Batch size [128]')
80
+ @click.option('-C','--cpu', type=bool, default=False, help='Use CPU [False]')
81
+ @click.option('-G','--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
82
+ @click.option('-c','--chrom', type=str, default=None, help='Comma separated chroms [all autosomes]')
83
+ @click.option('-t','--threshold', type=float, default=0.5, help='Loop Score Threshold [0.5]')
84
+ @click.option('-s','--sparsity', type=float, default=0.9, help='Allowed sparsity of submatrices [0.9]')
85
+ @click.option('-md','--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs [3000000]')
86
+ @click.option('-r','--resol',type=int,default=5000,help ='Resolution [5000]')
87
+ @click.option('--raw',type=bool,default=False,help ='Raw matrix or balanced matrix')
88
+ @click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
89
+ @click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates')
90
+ def scorelf(batchsize, cpu, gpu, chrom, threshold, sparsity, max_distance, resol, input, output, raw, image=224):
91
+ """ *development* Score Pixels for Very Large mcool (>30GB) ...
92
+ """
93
+ print('\npolaris loop scorelf START :) ')
94
+
95
+ center_size = image // 2
96
+ start_idx = (image - center_size) // 2
97
+ end_idx = (image + center_size) // 2
98
+ slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
99
+ slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
100
+
101
+ loopwriter = bedpewriter(output,resol,max_distance)
102
+
103
+ if cpu:
104
+ assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
105
+ gpu = ['None']
106
+ device = torch.device("cpu")
107
+ print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
108
+ else:
109
+ if torch.cuda.is_available():
110
+ if gpu is not None:
111
+ print("Using the specified GPU: " + gpu)
112
+ gpu=[int(i) for i in gpu.split(',')]
113
+ device = torch.device(f"cuda:{gpu[0]}")
114
+ else:
115
+ gpuIdx = torch.cuda.current_device()
116
+ device = torch.device(gpuIdx)
117
+ print("Automatically selected GPU: " + str(gpuIdx))
118
+ gpu=[gpu]
119
+ else:
120
+ device = torch.device("cpu")
121
+ gpu = ['None']
122
+ cpu = True
123
+ print('GPU is not available!')
124
+ print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
125
+
126
+
127
+ coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
128
+ modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
129
+ _modelstate = torch.load(modelstate, map_location=device.type)
130
+ parameters = _modelstate['parameters']
131
+
132
+ if chrom is None:
133
+ chrom =coolfile.chromnames
134
+ else:
135
+ chrom = chrom.split(',')
136
+
137
+ # for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX','chrW','W','chrZ','Z']: # 'Y','chrY','X','chrX'
138
+ # if rmchr in chrom:
139
+ # chrom.remove(rmchr)
140
+
141
+ print(f"Analysing chroms: {chrom}")
142
+
143
+ model = polarisnet(
144
+ image_size=parameters['image_size'],
145
+ in_channels=parameters['in_channels'],
146
+ out_channels=parameters['out_channels'],
147
+ embed_dim=parameters['embed_dim'],
148
+ depths=parameters['depths'],
149
+ channels=parameters['channels'],
150
+ num_heads=parameters['num_heads'],
151
+ drop=parameters['drop'],
152
+ drop_path=parameters['drop_path'],
153
+ pos_embed=parameters['pos_embed']
154
+ ).to(device)
155
+ model.load_state_dict(_modelstate['model_state_dict'])
156
+ if not cpu and len(gpu) > 1:
157
+ model = nn.DataParallel(model, device_ids=gpu)
158
+ model.eval()
159
+
160
+ badc=[]
161
+ chrom_ = tqdm(chrom, dynamic_ncols=True)
162
+ for _chrom in chrom_:
163
+ chrom_.desc = f"[Analyzing {_chrom}]"
164
+
165
+ oeMat, N = processCoolFile(coolfile, _chrom, raw)
166
+ start_point = -(image - center_size) // 2
167
+ joffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[np.newaxis, :], image, axis=0)
168
+ ioffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[:, np.newaxis], image, axis=1)
169
+ data, i_list, j_list = [], [], []
170
+ count=0
171
+ for i in range(start_point, N - image - start_point, center_size):
172
+ for j in range(0, max_distance//resol, center_size):
173
+ jj = j + i
174
+ # if jj + w <= N and i + w <= N:
175
+ _oeMat = getLocal(oeMat, i, jj, image, N)
176
+ if np.sum(_oeMat == 0) <= (image*image*sparsity):
177
+ data.append(_oeMat)
178
+ i_list.append(i + ioffset)
179
+ j_list.append(jj + joffset)
180
+
181
+ while len(data) >= batchsize or (i + center_size > N - image - start_point and len(data) > 0):
182
+ count += len(data)
183
+
184
+ bin_i = torch.tensor(np.stack(i_list[:batchsize], axis=0)).to(device)
185
+ bin_j = torch.tensor(np.stack(j_list[:batchsize], axis=0)).to(device)
186
+ targetX = torch.tensor(np.stack(data[:batchsize], axis=0)).to(device)
187
+ bin_i = bin_i*resol
188
+ bin_j = bin_j*resol
189
+
190
+ data = data[batchsize:]
191
+ i_list = i_list[batchsize:]
192
+ j_list = j_list[batchsize:]
193
+
194
+ # print(targetX.shape)
195
+ # print(bin_i.shape)
196
+ # print(bin_j.shape)
197
+
198
+ with torch.no_grad():
199
+ with autocast():
200
+ pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
201
+ loop = torch.nonzero(pred>threshold).flatten().cpu()
202
+ prob = pred[loop].cpu().numpy().flatten().tolist()
203
+ frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
204
+ frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
205
+
206
+ loopwriter.write(_chrom,frag1,frag2,prob)
207
+ if count == 0:
208
+ badc.append(_chrom)
209
+
210
+ if len(badc)==len(chrom):
211
+ raise ValueError("polaris loop scorelf FAILED :( \nThe '-s' value needs to be increased for more sparse data.")
212
+ else:
213
+ print(f'\npolaris loop scorelf FINISHED :)\nLoopscore file saved at {output}')
214
+ if len(badc)>0:
215
+ print(f"But the size of {badc} are too small or their contact matrix are too sparse.\nYou may need to check the data or run these chr respectively by increasing -s.")
216
+
217
+ if __name__ == '__main__':
218
+ scorelf()
polaris/model/sft_loops.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cae9e9a28e5c3ff0d328934c066d275371d5301db084a914431198134f66ada2
3
+ size 547572280
polaris/polaris.py CHANGED
@@ -7,7 +7,7 @@
7
 
8
  import click
9
  from polaris.loopScore import score
10
- from polaris.loopDev import dev
11
  from polaris.loopPool import pool
12
  from polaris.loop import pred
13
  from polaris.utils.util_cool2bcool import cool2bcool
@@ -42,7 +42,7 @@ def util():
42
 
43
  loop.add_command(pred)
44
  loop.add_command(score)
45
- loop.add_command(dev)
46
  loop.add_command(pool)
47
 
48
  util.add_command(depth)
 
7
 
8
  import click
9
  from polaris.loopScore import score
10
+ from polaris.loopLF import scorelf
11
  from polaris.loopPool import pool
12
  from polaris.loop import pred
13
  from polaris.utils.util_cool2bcool import cool2bcool
 
42
 
43
  loop.add_command(pred)
44
  loop.add_command(score)
45
+ loop.add_command(scorelf)
46
  loop.add_command(pool)
47
 
48
  util.add_command(depth)
polaris/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '1.0.0'
 
1
+ __version__ = '1.1.0'
setup.py CHANGED
@@ -10,14 +10,14 @@ Setup script for Polaris.
10
  A Versatile Framework for Chromatin Loop Annotation in Bulk and Single-cell Hi-C Data.
11
  """
12
 
13
- from setuptools import setup, find_packages
14
 
15
  with open("README.md", "r") as readme:
16
  long_des = readme.read()
17
 
18
  setup(
19
  name='polaris',
20
- version='1.0.1',
21
  author="Yusen HOU, Audrey Baguette, Mathieu Blanchette*, Yanlin Zhang*",
22
  author_email="[email protected]",
23
  description="A Versatile Framework for Chromatin Loop Annotation in Bulk and Single-cell Hi-C Data",
 
10
  A Versatile Framework for Chromatin Loop Annotation in Bulk and Single-cell Hi-C Data.
11
  """
12
 
13
+ from setuptools import setup
14
 
15
  with open("README.md", "r") as readme:
16
  long_des = readme.read()
17
 
18
  setup(
19
  name='polaris',
20
+ version='1.1.0',
21
  author="Yusen HOU, Audrey Baguette, Mathieu Blanchette*, Yanlin Zhang*",
22
  author_email="[email protected]",
23
  description="A Versatile Framework for Chromatin Loop Annotation in Bulk and Single-cell Hi-C Data",
setup.sh ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Configuration: Model file path and expected SHA-256 checksum
4
+ MODEL_PATH="polaris/model/sft_loop.pt"
5
+ EXPECTED_HASH="cae9e9a28e5c3ff0d328934c066d275371d5301db084a914431198134f66ada2"
6
+
7
+ # Pre-check: Verify if the model file exists with valid checksum
8
+ if [ -f "$MODEL_PATH" ]; then
9
+ # Calculate current file hash
10
+ ACTUAL_HASH=$(sha256sum "$MODEL_PATH" | awk '{print $1}')
11
+
12
+ # Hash validation logic
13
+ if [ "$ACTUAL_HASH" = "$EXPECTED_HASH" ]; then
14
+ echo "✅ Valid model file detected, skipping download"
15
+ pip install --use-pep517 --editable .
16
+ echo "✅ Polaris installation completed"
17
+ exit 0
18
+ else
19
+ # Security measure: Remove corrupted/invalid file
20
+ echo "⚠️ Invalid file hash detected, triggering re-download"
21
+ rm -f "$MODEL_PATH"
22
+ fi
23
+ fi
24
+
25
+ # Model download process
26
+ echo "⏳ Downloading model from Hugging Face..."
27
+ wget -O "$MODEL_PATH" "https://huggingface.co/rr-ss/Polaris/resolve/main/polaris/model/sft_loop.pt?download=true"
28
+
29
+ # Post-download verification
30
+ ACTUAL_HASH=$(sha256sum "$MODEL_PATH" | awk '{print $1}')
31
+ if [ "$ACTUAL_HASH" != "$EXPECTED_HASH" ]; then
32
+ # Error handling for failed verification
33
+ rm -f "$MODEL_PATH"
34
+ echo "❌ Download failed: Checksum mismatch (Actual: $ACTUAL_HASH)"
35
+ echo "Manual download required:"
36
+ echo "wget -O polaris/model/sft_loop.pt \"https://huggingface.co/rr-ss/Polaris/resolve/main/polaris/model/sft_loop.pt?download=true\""
37
+ exit 1
38
+ else
39
+ # Success workflow
40
+ pip install --use-pep517 --editable .
41
+ echo "✅ Model saved to: $MODEL_PATH"
42
+ echo "✅ Polaris installed successfully"
43
+ fi