import torch import cooler import click from torch import nn from tqdm import tqdm from torch.cuda.amp import autocast from importlib_resources import files from torch.utils.data import DataLoader from polaris.utils.util_loop import bedpewriter from polaris.model.polarisnet import polarisnet from polaris.utils.util_data import centerPredCoolDataset @click.command() @click.option('-b','--batchsize', type=int, default=128, help='Batch size [128]') @click.option('-C','--cpu', type=bool, default=False, help='Use CPU [False]') @click.option('-G','--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]') @click.option('-c','--chrom', type=str, default=None, help='Comma separated chroms [all autosomes]') @click.option('-nw','--workers', type=int, default=16, help='Number of cpu threads [16]') @click.option('-t','--threshold', type=float, default=0.5, help='Loop Score Threshold [0.5]') @click.option('-s','--sparsity', type=float, default=0.9, help='Allowed sparsity of submatrices [0.9]') @click.option('-md','--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs [3000000]') @click.option('-r','--resol',type=int,default=5000,help ='Resolution [5000]') @click.option('--raw',type=bool,default=False,help ='Raw matrix or balanced matrix') @click.option('-i','--input', type=str,required=True,help='Hi-C contact map path') @click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates') def score(batchsize, cpu, gpu, chrom, workers, threshold, sparsity, max_distance, resol, input, output, raw, image=224): """Predict loop score for each pixel in the input contact map """ print('\npolaris loop score START :) ') center_size = image // 2 start_idx = (image - center_size) // 2 end_idx = (image + center_size) // 2 slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx)) slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx)) loopwriter = bedpewriter(output,resol,max_distance) if cpu: assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n" gpu = ['None'] device = torch.device("cpu") print('Using CPU mode... (This may take significantly longer than using GPU mode.)') else: if torch.cuda.is_available(): if gpu is not None: print("Using the specified GPU: " + gpu) gpu=[int(i) for i in gpu.split(',')] device = torch.device(f"cuda:{gpu[0]}") else: gpuIdx = torch.cuda.current_device() device = torch.device(gpuIdx) print("Automatically selected GPU: " + str(gpuIdx)) gpu=[gpu] else: device = torch.device("cpu") gpu = ['None'] cpu = True print('GPU is not available!') print('Using CPU mode... (This may take significantly longer than using GPU mode.)') coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol)) modelstate = str(files('polaris').joinpath('model/sft_loop.pt')) _modelstate = torch.load(modelstate, map_location=device.type) parameters = _modelstate['parameters'] if chrom is None: chrom =coolfile.chromnames else: chrom = chrom.split(',') # for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX','chrW','W','chrZ','Z']: # 'Y','chrY','X','chrX' # if rmchr in chrom: # chrom.remove(rmchr) print(f"Analysing chroms: {chrom}") model = polarisnet( image_size=parameters['image_size'], in_channels=parameters['in_channels'], out_channels=parameters['out_channels'], embed_dim=parameters['embed_dim'], depths=parameters['depths'], channels=parameters['channels'], num_heads=parameters['num_heads'], drop=parameters['drop'], drop_path=parameters['drop_path'], pos_embed=parameters['pos_embed'] ).to(device) model.load_state_dict(_modelstate['model_state_dict']) if not cpu and len(gpu) > 1: model = nn.DataParallel(model, device_ids=gpu) model.eval() badc=[] chrom_ = tqdm(chrom, dynamic_ncols=True) for _chrom in chrom_: test_data = centerPredCoolDataset(coolfile,_chrom,max_distance_bin=max_distance//resol,w=image,step=center_size,s=sparsity,raw=raw) test_dataloader = DataLoader(test_data, batch_size=batchsize, shuffle=False,num_workers=workers,prefetch_factor=4,pin_memory=(gpu is not None)) chrom_.desc = f"[Analyzing {_chrom} with {len(test_data)} submatrices]" if len(test_data) == 0: badc.append(_chrom) with torch.no_grad(): for X in test_dataloader: bin_i,bin_j,targetX=X bin_i = bin_i*resol bin_j = bin_j*resol with autocast(): pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten() loop = torch.nonzero(pred>threshold).flatten().cpu() prob = pred[loop].cpu().numpy().flatten().tolist() frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist() frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist() loopwriter.write(_chrom,frag1,frag2,prob) if len(badc)==len(chrom): raise ValueError("polaris loop score FAILED :( \nThe '-s' value needs to be increased for more sparse data.") else: print(f'\npolaris loop score FINISHED :)\nLoopscore file saved at {output}') if len(badc)>0: print(f"But the size of {badc} are too small or their contact matrix are too sparse.\nYou may need to check the data or run these chr respectively by increasing -s.") if __name__ == '__main__': score()