rsc3 commited on
Commit
84e7b82
·
verified ·
1 Parent(s): 8536dd3

End of training

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.5426356589147286
30
  - name: Recall
31
  type: recall
32
- value: 0.38924930491195553
33
  - name: F1
34
  type: f1
35
- value: 0.4533189422558014
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9463896370398871
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.2586
49
- - Precision: 0.5426
50
- - Recall: 0.3892
51
- - F1: 0.4533
52
- - Accuracy: 0.9464
53
 
54
  ## Model description
55
 
@@ -80,13 +80,13 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | No log | 1.0 | 213 | 0.2486 | 0.4843 | 0.4004 | 0.4384 | 0.9443 |
84
- | No log | 2.0 | 426 | 0.2586 | 0.5426 | 0.3892 | 0.4533 | 0.9464 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.44.2
90
- - Pytorch 2.4.0+cu121
91
- - Datasets 2.21.0
92
  - Tokenizers 0.19.1
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.5762987012987013
30
  - name: Recall
31
  type: recall
32
+ value: 0.3290083410565338
33
  - name: F1
34
  type: f1
35
+ value: 0.4188790560471976
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9424992518490017
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.2703
49
+ - Precision: 0.5763
50
+ - Recall: 0.3290
51
+ - F1: 0.4189
52
+ - Accuracy: 0.9425
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 213 | 0.2797 | 0.5139 | 0.2567 | 0.3424 | 0.9385 |
84
+ | No log | 2.0 | 426 | 0.2703 | 0.5763 | 0.3290 | 0.4189 | 0.9425 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.44.2
90
+ - Pytorch 2.4.1+cu121
91
+ - Datasets 3.0.0
92
  - Tokenizers 0.19.1
runs/Sep19_23-48-38_1de0d8f41bd7/events.out.tfevents.1726789719.1de0d8f41bd7.677.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00e62f53c5c90bc4e617e9da59b9b2bfc7d0cf17172a0c72124af5d9400d2f91
3
- size 5882
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f687a6ed269d2fe6e27d8e2f3b81a68601bf4fe5590a02502d81ca59ca568e8b
3
+ size 6708