End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,13 +80,13 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| No log | 1.0 | 213 | 0.
|
84 |
-
| No log | 2.0 | 426 | 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.44.2
|
90 |
-
- Pytorch 2.4.
|
91 |
-
- Datasets
|
92 |
- Tokenizers 0.19.1
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.5762987012987013
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.3290083410565338
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.4188790560471976
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9424992518490017
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2703
|
49 |
+
- Precision: 0.5763
|
50 |
+
- Recall: 0.3290
|
51 |
+
- F1: 0.4189
|
52 |
+
- Accuracy: 0.9425
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 1.0 | 213 | 0.2797 | 0.5139 | 0.2567 | 0.3424 | 0.9385 |
|
84 |
+
| No log | 2.0 | 426 | 0.2703 | 0.5763 | 0.3290 | 0.4189 | 0.9425 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.44.2
|
90 |
+
- Pytorch 2.4.1+cu121
|
91 |
+
- Datasets 3.0.0
|
92 |
- Tokenizers 0.19.1
|
runs/Sep19_23-48-38_1de0d8f41bd7/events.out.tfevents.1726789719.1de0d8f41bd7.677.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f687a6ed269d2fe6e27d8e2f3b81a68601bf4fe5590a02502d81ca59ca568e8b
|
3 |
+
size 6708
|