File size: 8,718 Bytes
bed0be1 659aebf 5780cdd 659aebf 8f295c5 659aebf 5780cdd 659aebf bed0be1 2f0b1c1 8f295c5 2f0b1c1 4ddae95 2f0b1c1 3d32f93 2f0b1c1 53537bd 2f0b1c1 53537bd 2f0b1c1 53537bd 2f0b1c1 53537bd 2f0b1c1 53537bd 2f0b1c1 53537bd 2f0b1c1 e926725 2f0b1c1 4d84409 7ff5b5d 4d84409 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: Rubra-Qwen2-7B-Instruct
results:
- task:
type: text-generation
dataset:
type: MMLU
name: MMLU
metrics:
- type: 5-shot
value: 68.88
verified: false
- task:
type: text-generation
dataset:
type: GPQA
name: GPQA
metrics:
- type: 0-shot
value: 30.36
verified: false
- task:
type: text-generation
dataset:
type: GSM-8K
name: GSM-8K
metrics:
- type: 8-shot, CoT
value: 75.82
verified: false
- task:
type: text-generation
dataset:
type: MATH
name: MATH
metrics:
- type: 4-shot, CoT
value: 28.72
verified: false
- task:
type: text-generation
dataset:
type: MT-bench
name: MT-bench
metrics:
- type: GPT-4 as Judge
value: 8.08
verified: false
tags:
- function-calling
- tool-calling
- agentic
- rubra
- conversational
language:
- en
- zh
---
# Qwen2 7B Instruct
## Model description
The model is the result of further post-training [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct). It is capable of complex multi-turn tool/function calling.
## Training
The model was post-trained (freeze tuned & DPO) on a proprietary dataset consisting of diverse function calling, chat, and instruct data.
## How to use
You can use the model with the Hugging Face `transformers` and the rubra library [rubra-tools](https://github.com/rubra-ai/rubra-tools) as follows:
```
pip install rubra_tools torch==2.3.0 transformers accelerate
```
You also need Node.js and npm installed. Once you do, install the `jsonrepair` package - it's used to fix some rare hallucinations by the model.
```
npm install jsonrepair
```
### 1. Load the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from rubra_tools import preprocess_input, postprocess_output
model_id = "rubra-ai/Qwen2-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
)
```
### 2. Define Functions
Here we use 4 functions for a simple math chaining question:
```python
functions = [
{
'type': 'function',
'function': {
'name': 'addition',
'description': "Adds two numbers together",
'parameters': {
'type': 'object',
'properties': {
'a': {
'description': 'First number to add',
'type': 'string'
},
'b': {
'description': 'Second number to add',
'type': 'string'
}
},
'required': []
}
}
},
{
'type': 'function',
'function': {
'name': 'subtraction',
'description': "Subtracts two numbers",
'parameters': {
'type': 'object',
'properties': {
'a': {
'description': 'First number to be subtracted from',
'type': 'string'
},
'b': {
'description': 'Number to subtract',
'type': 'string'
}
},
'required': []
}
}
},
{
'type': 'function',
'function': {
'name': 'multiplication',
'description': "Multiply two numbers together",
'parameters': {
'type': 'object',
'properties': {
'a': {
'description': 'First number to multiply',
'type': 'string'
},
'b': {
'description': 'Second number to multiply',
'type': 'string'
}
},
'required': []
}
}
},
{
'type': 'function',
'function': {
'name': 'division',
'description': "Divide two numbers",
'parameters': {
'type': 'object',
'properties': {
'a': {
'description': 'First number to use as the dividend',
'type': 'string'
},
'b': {
'description': 'Second number to use as the divisor',
'type': 'string'
}
},
'required': []
}
}
},
]
```
### 3. Start the conversation
```python
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the result of four plus six? Take the result and add 2? Then multiply by 5 and then divide by two"},
]
def run_model(messages, functions):
## Format messages in Rubra's format
formatted_msgs = preprocess_input(msgs=messages, tools=functions)
text = tokenizer.apply_chat_template(
formatted_msgs,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
raw_output = run_model(messages, functions)
# Check if there's a function call
function_call = postprocess_output(raw_output)
if function_call:
print(function_call)
else:
print(raw_output)
```
You should see this output, which is a function call made by the AI assistant:
```
[{'id': 'fc65a533', 'function': {'name': 'addition', 'arguments': '{"a": "4", "b": "6"}'}, 'type': 'function'}]
```
### 4. Add Executed Tool Result to Message History & Continue the Conversation
```python
if function_call:
# append the assistant tool call msg
messages.append({"role": "assistant", "tool_calls": function_call})
# append the result of the tool call in openai format, in this case, the value of add 6 to 4 is 10.
messages.append({'role': 'tool', 'tool_call_id': function_call[0]["id"], 'name': function_call[0]["function"]["name"], 'content': '10'})
raw_output1 = run_model(messages, functions)
# Check if there's a function call
function_call = postprocess_output(raw_output1)
if function_call:
print(function_call)
else:
print(raw_output)
```
The LLM will make another call
```
[{'id': '2ffc3de4', 'function': {'name': 'addition', 'arguments': '{"a": "10", "b": "2"}'}, 'type': 'function'}]
```
## Framework Versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
## Limitations and Bias
While the model performs well on a wide range of tasks, it may still produce biased or incorrect outputs. Users should exercise caution and critical judgment when using the model in sensitive or high-stakes applications. The model's outputs are influenced by the data it was trained on, which may contain inherent biases.
## Ethical Considerations
Users should ensure that the deployment of this model adheres to ethical guidelines and consider the potential societal impact of the generated text. Misuse of the model for generating harmful or misleading content is strongly discouraged.
## Acknowledgements
We would like to thank Alibaba Cloud for the model.
## Contact Information
For questions or comments about the model, please reach out to [the rubra team](mailto:[email protected]).
## Citation
If you use this work, please cite it as:
```
@misc {rubra_ai_2024,
author = { Sanjay Nadhavajhala and Yingbei Tong },
title = { Rubra-Qwen2-7B-Instruct },
year = 2024,
url = { https://huggingface.co/rubra-ai/Qwen2-7B-Instruct },
doi = { 10.57967/hf/2683 },
publisher = { Hugging Face }
}
``` |