rufimelo commited on
Commit
f6154c1
1 Parent(s): a77924f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -96
README.md CHANGED
@@ -1,125 +1,115 @@
1
  ---
2
- pipeline_tag: sentence-similarity
 
 
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
 
 
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
- ## Usage (Sentence-Transformers)
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
20
- ```
21
- pip install -U sentence-transformers
22
- ```
23
 
24
- Then you can use the model like this:
25
 
26
- ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
- ```
34
 
35
-
36
-
37
- ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
 
40
  ```python
41
- from transformers import AutoTokenizer, AutoModel
42
- import torch
43
-
44
 
45
- #Mean Pooling - Take attention mask into account for correct averaging
46
- def mean_pooling(model_output, attention_mask):
47
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
 
51
-
52
- # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
-
55
- # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
-
59
- # Tokenize sentences
60
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
-
62
- # Compute token embeddings
63
- with torch.no_grad():
64
- model_output = model(**encoded_input)
65
-
66
- # Perform pooling. In this case, mean pooling.
67
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
-
69
- print("Sentence embeddings:")
70
- print(sentence_embeddings)
71
  ```
72
 
 
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
-
81
-
82
- ## Training
83
- The model was trained with the parameters:
84
 
85
- **DataLoader**:
86
 
87
- `torch.utils.data.dataloader.DataLoader` of length 200000 with parameters:
88
- ```
89
- {'batch_size': 1, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ```
91
 
92
- **Loss**:
93
 
94
- `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
95
 
96
- Parameters of the fit()-Method:
97
- ```
98
- {
99
- "epochs": 1,
100
- "evaluation_steps": 0,
101
- "evaluator": "NoneType",
102
- "max_grad_norm": 1,
103
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
104
- "optimizer_params": {
105
- "lr": 1e-05
106
- },
107
- "scheduler": "constantlr",
108
- "steps_per_epoch": null,
109
- "warmup_steps": 10000,
110
- "weight_decay": 0
111
  }
112
  ```
113
-
114
-
115
- ## Full Model Architecture
116
- ```
117
- SentenceTransformer(
118
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
119
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
120
- )
121
- ```
122
-
123
- ## Citing & Authors
124
-
125
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ language:
3
+ - pt
4
+ thumbnail: "Portugues BERT for the Legal Domain"
5
  tags:
6
+ - bert
7
+ - pytorch
8
+ - tsdae
9
+ datasets:
10
+ - rufimelo/PortugueseLegalSentences-v1
11
+ license: "mit"
12
+ widget:
13
+ - text: "O advogado apresentou [MASK] ao juíz."
14
  ---
15
 
16
+ # Legal_BERTimbau
17
 
18
+ ## Introduction
19
 
20
+ Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large.
21
 
22
+ "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large.
23
 
24
+ For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)."
25
 
26
+ The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 2e-5, using TSDAE technique)
 
 
27
 
 
28
 
29
+ ## Available models
 
 
30
 
31
+ | Model | Arch. | #Layers | #Params |
32
+ | ---------------------------------------- | ---------- | ------- | ------- |
33
+ |`rufimelo/Legal-BERTimbau-base` |BERT-Base |12 |110M|
34
+ | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M |
35
 
36
+ ## Usage
 
 
 
37
 
38
  ```python
39
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
 
 
40
 
41
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
 
 
 
 
42
 
43
+ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ```
45
 
46
+ ### Masked language modeling prediction example
47
 
48
+ ```python
49
+ from transformers import pipeline
50
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
53
+ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
54
+
55
+ pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
56
+ pipe('O advogado apresentou [MASK] para o juíz')
57
+ # [{'score': 0.5034703612327576,
58
+ #'token': 8190,
59
+ #'token_str': 'recurso',
60
+ #'sequence': 'O advogado apresentou recurso para o juíz'},
61
+ #{'score': 0.07347951829433441,
62
+ #'token': 21973,
63
+ #'token_str': 'petição',
64
+ #'sequence': 'O advogado apresentou petição para o juíz'},
65
+ #{'score': 0.05165359005331993,
66
+ #'token': 4299,
67
+ #'token_str': 'resposta',
68
+ #'sequence': 'O advogado apresentou resposta para o juíz'},
69
+ #{'score': 0.04611917585134506,
70
+ #'token': 5265,
71
+ #'token_str': 'exposição',
72
+ #'sequence': 'O advogado apresentou exposição para o juíz'},
73
+ #{'score': 0.04068068787455559,
74
+ #'token': 19737, 'token_str':
75
+ #'alegações',
76
+ #'sequence': 'O advogado apresentou alegações para o juíz'}]
77
 
78
+ ```
 
 
 
 
 
 
 
 
79
 
80
+ ### For BERT embeddings
81
 
82
+ ```python
83
+ import torch
84
+ from transformers import AutoModel
85
+
86
+ model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE')
87
+ input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')
88
+
89
+ with torch.no_grad():
90
+ outs = model(input_ids)
91
+ encoded = outs[0][0, 1:-1]
92
+
93
+ #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157],
94
+ #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310],
95
+ #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050],
96
+ #...,
97
+ #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264],
98
+ #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509],
99
+ #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]])
100
  ```
101
 
102
+ ## Citation
103
 
104
+ If you use this work, please cite BERTimbau's work:
105
 
106
+ ```bibtex
107
+ @inproceedings{souza2020bertimbau,
108
+ author = {F{\'a}bio Souza and
109
+ Rodrigo Nogueira and
110
+ Roberto Lotufo},
111
+ title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
112
+ booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
113
+ year = {2020}
 
 
 
 
 
 
 
114
  }
115
  ```