rufimelo commited on
Commit
9b78e91
1 Parent(s): 440b707

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -28
README.md CHANGED
@@ -1,3 +1,4 @@
 
1
  ---
2
  language:
3
  - pt
@@ -19,14 +20,27 @@ widget:
19
  - "O juíz leu o recurso."
20
  - "O juíz atirou uma pedra."
21
  example_title: "Example 1"
22
- metrics:
23
- - bleu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ---
25
-
26
- # rufimelo/Legal-SBERTimbau-sts-base-ma
27
 
28
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
29
- rufimelo/rufimelo/Legal-SBERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge.
30
  It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
31
 
32
  ## Usage (Sentence-Transformers)
@@ -43,7 +57,7 @@ Then you can use the model like this:
43
  from sentence_transformers import SentenceTransformer
44
  sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
45
 
46
- model = SentenceTransformer('rufimelo/Legal-SBERTimbau-sts-base-ma')
47
  embeddings = model.encode(sentences)
48
  print(embeddings)
49
  ```
@@ -69,8 +83,8 @@ def mean_pooling(model_output, attention_mask):
69
  sentences = ['This is an example sentence', 'Each sentence is converted']
70
 
71
  # Load model from HuggingFace Hub
72
- tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-sts-base-ma')
73
- model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-sts-base-ma')
74
 
75
  # Tokenize sentences
76
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -89,29 +103,26 @@ print(sentence_embeddings)
89
 
90
  ## Evaluation Results STS
91
 
92
- | Model| Dataset | PearsonCorrelation |
93
- | ---------------------------------------- | ---------- | ---------- |
94
- | Legal-SBERTimbau-sts-large| Assin | 0.76629 |
95
- | Legal-SBERTimbau-sts-large| Assin2| 0.82357 |
96
- | Legal-SBERTimbau-sts-base| Assin | 0.71457 |
97
- | Legal-SBERTimbau-sts-base| Assin2| 0.73545|
98
- | Legal-SBERTimbau-sts-large-v2| Assin | 0.76299 |
99
- | Legal-SBERTimbau-sts-large-v2| Assin2| 0.81121 |
100
- | Legal-SBERTimbau-sts-large-v2| stsb_multi_mt pt| 0.81726 |
101
- | Legal-SBERTimbau-sts-base-ma| Assin | 0.74874 |
102
- | Legal-SBERTimbau-sts-base-ma| Assin2| 0.79532 |
103
- | Legal-SBERTimbau-sts-base-ma| stsb_multi_mt pt| 0.82254 |
104
- | ---------------------------------------- | ---------- |---------- |
105
- | paraphrase-multilingual-mpnet-base-v2| Assin | 0.71457|
106
- | paraphrase-multilingual-mpnet-base-v2| Assin2| 0.79831 |
107
- | paraphrase-multilingual-mpnet-base-v2| stsb_multi_mt pt| 0.83999 |
108
- | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin | 0.77641 |
109
- | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| Assin2| 0.79831 |
110
- | paraphrase-multilingual-mpnet-base-v2 Fine tuned with assin(s)| stsb_multi_mt pt| 0.84575 |
111
 
112
  ## Training
113
 
114
- rufimelo/Legal-SBERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) base.
115
 
116
  Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation.
117
  For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/paraphrase-xlm-r-multilingual-v1', the supposed supported language as English and the language to learn was portuguese.
 
1
+
2
  ---
3
  language:
4
  - pt
 
20
  - "O juíz leu o recurso."
21
  - "O juíz atirou uma pedra."
22
  example_title: "Example 1"
23
+ model-index:
24
+ - name: BERTimbau
25
+ results:
26
+ - task:
27
+ name: STS
28
+ type: STS
29
+ metrics:
30
+ - name: Pearson Correlation - assin Dataset
31
+ type: Pearson Correlation
32
+ value: 0.74874
33
+ - name: Pearson Correlation - assin2 Dataset
34
+ type: Pearson Correlation
35
+ value: 0.79532
36
+ - name: Pearson Correlation - stsb_multi_mt pt Dataset
37
+ type: Pearson Correlation
38
+ value: 0.82254
39
  ---
40
+ # rufimelo/Legal-BERTimbau-sts-base-ma
 
41
 
42
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
43
+ rufimelo/rufimelo/Legal-BERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge.
44
  It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
45
 
46
  ## Usage (Sentence-Transformers)
 
57
  from sentence_transformers import SentenceTransformer
58
  sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
59
 
60
+ model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma')
61
  embeddings = model.encode(sentences)
62
  print(embeddings)
63
  ```
 
83
  sentences = ['This is an example sentence', 'Each sentence is converted']
84
 
85
  # Load model from HuggingFace Hub
86
+ tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma')
87
+ model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma')
88
 
89
  # Tokenize sentences
90
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
103
 
104
  ## Evaluation Results STS
105
 
106
+ | Model| Assin | Assin2|stsb_multi_mt pt|
107
+ | ---------------------------------------- | ---------- | ---------- |---------- |
108
+ | Legal-BERTimbau-sts-base| 0.71457| 0.73545 | |
109
+ | Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |
110
+ | Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|
111
+ | Legal-BERTimbau-sts-large| 0.76629| 0.82357 | |
112
+ | Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |
113
+ | Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|
114
+ | Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261|
115
+ | Legal-BERTimbau-sts-large-ma-v3| 0.7749| 0.8470| 0.8364|
116
+ | ---------------------------------------- | ---------- |---------- |---------- |
117
+ | BERTimbau base Fine-tuned for STS|0.78455 | 0.80626|0.82841|
118
+ | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|
119
+ | ---------------------------------------- | ---------- |---------- |---------- |
120
+ | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |
121
+ | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |0.84575 |
 
 
 
122
 
123
  ## Training
124
 
125
+ rufimelo/Legal-BERTimbau-sts-base-ma is based on Legal-BERTimbau-base which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) base.
126
 
127
  Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation.
128
  For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/paraphrase-xlm-r-multilingual-v1', the supposed supported language as English and the language to learn was portuguese.