Commit
·
6725f05
1
Parent(s):
343cfd6
Upload 11 files
Browse files- README.md +57 -0
- all_results.json +8 -0
- config.json +24 -0
- generation_config.json +7 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- special_tokens_map.json +1 -0
- tokenizer.model +3 -0
- tokenizer_config.json +9 -0
- train_results.json +8 -0
- trainer_state.json +2179 -0
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- customized
|
7 |
+
model-index:
|
8 |
+
- name: finetune_with_lora
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# finetune_with_lora
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [ruibin-wang/llama-7b-hf](https://huggingface.co/ruibin-wang/llama-7b-hf) on the customized dataset.
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0001
|
37 |
+
- train_batch_size: 1
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- distributed_type: multi-GPU
|
41 |
+
- num_devices: 2
|
42 |
+
- total_train_batch_size: 2
|
43 |
+
- total_eval_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
### Framework versions
|
53 |
+
|
54 |
+
- Transformers 4.28.0.dev0
|
55 |
+
- Pytorch 1.13.1
|
56 |
+
- Datasets 2.10.1
|
57 |
+
- Tokenizers 0.13.3
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.4033946073105007,
|
4 |
+
"train_runtime": 2282.7571,
|
5 |
+
"train_samples": 1437,
|
6 |
+
"train_samples_per_second": 6.295,
|
7 |
+
"train_steps_per_second": 3.15
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ruibin-wang/llama-7b-hf",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 1,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"max_sequence_length": 2048,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"pad_token_id": -1,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "bfloat16",
|
21 |
+
"transformers_version": "4.28.0.dev0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.28.0.dev0"
|
7 |
+
}
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee85c254efe3b49ff1e4ae48892d53dbf12334a78e9320ce84af0de8e57c5844
|
3 |
+
size 3500315603
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13476835328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
329 |
+
}
|
330 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "",
|
3 |
+
"clean_up_tokenization_spaces": false,
|
4 |
+
"eos_token": "",
|
5 |
+
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"special_tokens_map_file": "/root/.cache/huggingface/hub/models--ruibin-wang--llama-7b-hf/snapshots/d2e4e3c6c145809f570bb9ada33e2734d305cecd/special_tokens_map.json",
|
7 |
+
"tokenizer_class": "LlamaTokenizer",
|
8 |
+
"unk_token": ""
|
9 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.4033946073105007,
|
4 |
+
"train_runtime": 2282.7571,
|
5 |
+
"train_samples": 1437,
|
6 |
+
"train_samples_per_second": 6.295,
|
7 |
+
"train_steps_per_second": 3.15
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 10.0,
|
5 |
+
"global_step": 7190,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.03,
|
12 |
+
"learning_rate": 9.972183588317107e-05,
|
13 |
+
"loss": 1.5922,
|
14 |
+
"step": 20
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.06,
|
18 |
+
"learning_rate": 9.944367176634215e-05,
|
19 |
+
"loss": 1.0766,
|
20 |
+
"step": 40
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.08,
|
24 |
+
"learning_rate": 9.916550764951322e-05,
|
25 |
+
"loss": 0.7023,
|
26 |
+
"step": 60
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.11,
|
30 |
+
"learning_rate": 9.888734353268429e-05,
|
31 |
+
"loss": 0.6458,
|
32 |
+
"step": 80
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.14,
|
36 |
+
"learning_rate": 9.860917941585536e-05,
|
37 |
+
"loss": 0.6244,
|
38 |
+
"step": 100
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.17,
|
42 |
+
"learning_rate": 9.833101529902643e-05,
|
43 |
+
"loss": 0.5692,
|
44 |
+
"step": 120
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.19,
|
48 |
+
"learning_rate": 9.805285118219751e-05,
|
49 |
+
"loss": 0.5318,
|
50 |
+
"step": 140
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.22,
|
54 |
+
"learning_rate": 9.777468706536858e-05,
|
55 |
+
"loss": 0.6218,
|
56 |
+
"step": 160
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.25,
|
60 |
+
"learning_rate": 9.749652294853965e-05,
|
61 |
+
"loss": 0.5794,
|
62 |
+
"step": 180
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.28,
|
66 |
+
"learning_rate": 9.721835883171071e-05,
|
67 |
+
"loss": 0.591,
|
68 |
+
"step": 200
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.31,
|
72 |
+
"learning_rate": 9.694019471488178e-05,
|
73 |
+
"loss": 0.582,
|
74 |
+
"step": 220
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.33,
|
78 |
+
"learning_rate": 9.666203059805285e-05,
|
79 |
+
"loss": 0.6104,
|
80 |
+
"step": 240
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.36,
|
84 |
+
"learning_rate": 9.638386648122393e-05,
|
85 |
+
"loss": 0.5706,
|
86 |
+
"step": 260
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.39,
|
90 |
+
"learning_rate": 9.6105702364395e-05,
|
91 |
+
"loss": 0.6002,
|
92 |
+
"step": 280
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.42,
|
96 |
+
"learning_rate": 9.582753824756607e-05,
|
97 |
+
"loss": 0.5189,
|
98 |
+
"step": 300
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.45,
|
102 |
+
"learning_rate": 9.554937413073714e-05,
|
103 |
+
"loss": 0.5508,
|
104 |
+
"step": 320
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.47,
|
108 |
+
"learning_rate": 9.52712100139082e-05,
|
109 |
+
"loss": 0.5644,
|
110 |
+
"step": 340
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.5,
|
114 |
+
"learning_rate": 9.499304589707929e-05,
|
115 |
+
"loss": 0.5367,
|
116 |
+
"step": 360
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.53,
|
120 |
+
"learning_rate": 9.471488178025035e-05,
|
121 |
+
"loss": 0.5947,
|
122 |
+
"step": 380
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.56,
|
126 |
+
"learning_rate": 9.443671766342142e-05,
|
127 |
+
"loss": 0.5636,
|
128 |
+
"step": 400
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.58,
|
132 |
+
"learning_rate": 9.41585535465925e-05,
|
133 |
+
"loss": 0.5824,
|
134 |
+
"step": 420
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.61,
|
138 |
+
"learning_rate": 9.388038942976356e-05,
|
139 |
+
"loss": 0.6374,
|
140 |
+
"step": 440
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.64,
|
144 |
+
"learning_rate": 9.360222531293463e-05,
|
145 |
+
"loss": 0.5929,
|
146 |
+
"step": 460
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.67,
|
150 |
+
"learning_rate": 9.332406119610571e-05,
|
151 |
+
"loss": 0.5689,
|
152 |
+
"step": 480
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.7,
|
156 |
+
"learning_rate": 9.304589707927678e-05,
|
157 |
+
"loss": 0.5719,
|
158 |
+
"step": 500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.72,
|
162 |
+
"learning_rate": 9.276773296244784e-05,
|
163 |
+
"loss": 0.5469,
|
164 |
+
"step": 520
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.75,
|
168 |
+
"learning_rate": 9.248956884561893e-05,
|
169 |
+
"loss": 0.5986,
|
170 |
+
"step": 540
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.78,
|
174 |
+
"learning_rate": 9.221140472878998e-05,
|
175 |
+
"loss": 0.5868,
|
176 |
+
"step": 560
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.81,
|
180 |
+
"learning_rate": 9.193324061196106e-05,
|
181 |
+
"loss": 0.596,
|
182 |
+
"step": 580
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.83,
|
186 |
+
"learning_rate": 9.165507649513213e-05,
|
187 |
+
"loss": 0.5653,
|
188 |
+
"step": 600
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.86,
|
192 |
+
"learning_rate": 9.13769123783032e-05,
|
193 |
+
"loss": 0.5527,
|
194 |
+
"step": 620
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.89,
|
198 |
+
"learning_rate": 9.109874826147428e-05,
|
199 |
+
"loss": 0.5296,
|
200 |
+
"step": 640
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.92,
|
204 |
+
"learning_rate": 9.082058414464535e-05,
|
205 |
+
"loss": 0.5399,
|
206 |
+
"step": 660
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.95,
|
210 |
+
"learning_rate": 9.054242002781642e-05,
|
211 |
+
"loss": 0.6171,
|
212 |
+
"step": 680
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.97,
|
216 |
+
"learning_rate": 9.026425591098748e-05,
|
217 |
+
"loss": 0.5256,
|
218 |
+
"step": 700
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.0,
|
222 |
+
"learning_rate": 8.998609179415855e-05,
|
223 |
+
"loss": 0.5679,
|
224 |
+
"step": 720
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 1.03,
|
228 |
+
"learning_rate": 8.970792767732963e-05,
|
229 |
+
"loss": 0.5813,
|
230 |
+
"step": 740
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 1.06,
|
234 |
+
"learning_rate": 8.94297635605007e-05,
|
235 |
+
"loss": 0.5831,
|
236 |
+
"step": 760
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.08,
|
240 |
+
"learning_rate": 8.915159944367177e-05,
|
241 |
+
"loss": 0.5042,
|
242 |
+
"step": 780
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.11,
|
246 |
+
"learning_rate": 8.887343532684285e-05,
|
247 |
+
"loss": 0.4984,
|
248 |
+
"step": 800
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.14,
|
252 |
+
"learning_rate": 8.859527121001391e-05,
|
253 |
+
"loss": 0.5397,
|
254 |
+
"step": 820
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.17,
|
258 |
+
"learning_rate": 8.831710709318498e-05,
|
259 |
+
"loss": 0.4707,
|
260 |
+
"step": 840
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 1.2,
|
264 |
+
"learning_rate": 8.803894297635606e-05,
|
265 |
+
"loss": 0.5099,
|
266 |
+
"step": 860
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 1.22,
|
270 |
+
"learning_rate": 8.776077885952713e-05,
|
271 |
+
"loss": 0.508,
|
272 |
+
"step": 880
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 1.25,
|
276 |
+
"learning_rate": 8.74826147426982e-05,
|
277 |
+
"loss": 0.5305,
|
278 |
+
"step": 900
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 1.28,
|
282 |
+
"learning_rate": 8.720445062586928e-05,
|
283 |
+
"loss": 0.5146,
|
284 |
+
"step": 920
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 1.31,
|
288 |
+
"learning_rate": 8.692628650904033e-05,
|
289 |
+
"loss": 0.5567,
|
290 |
+
"step": 940
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.34,
|
294 |
+
"learning_rate": 8.664812239221141e-05,
|
295 |
+
"loss": 0.4569,
|
296 |
+
"step": 960
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.36,
|
300 |
+
"learning_rate": 8.636995827538248e-05,
|
301 |
+
"loss": 0.5321,
|
302 |
+
"step": 980
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 1.39,
|
306 |
+
"learning_rate": 8.609179415855355e-05,
|
307 |
+
"loss": 0.5039,
|
308 |
+
"step": 1000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 1.42,
|
312 |
+
"learning_rate": 8.581363004172463e-05,
|
313 |
+
"loss": 0.5198,
|
314 |
+
"step": 1020
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 1.45,
|
318 |
+
"learning_rate": 8.55354659248957e-05,
|
319 |
+
"loss": 0.5124,
|
320 |
+
"step": 1040
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 1.47,
|
324 |
+
"learning_rate": 8.525730180806675e-05,
|
325 |
+
"loss": 0.4706,
|
326 |
+
"step": 1060
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.5,
|
330 |
+
"learning_rate": 8.497913769123783e-05,
|
331 |
+
"loss": 0.5389,
|
332 |
+
"step": 1080
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.53,
|
336 |
+
"learning_rate": 8.47009735744089e-05,
|
337 |
+
"loss": 0.5279,
|
338 |
+
"step": 1100
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.56,
|
342 |
+
"learning_rate": 8.442280945757997e-05,
|
343 |
+
"loss": 0.5317,
|
344 |
+
"step": 1120
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 1.59,
|
348 |
+
"learning_rate": 8.414464534075105e-05,
|
349 |
+
"loss": 0.549,
|
350 |
+
"step": 1140
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 1.61,
|
354 |
+
"learning_rate": 8.386648122392212e-05,
|
355 |
+
"loss": 0.5743,
|
356 |
+
"step": 1160
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 1.64,
|
360 |
+
"learning_rate": 8.358831710709319e-05,
|
361 |
+
"loss": 0.5269,
|
362 |
+
"step": 1180
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 1.67,
|
366 |
+
"learning_rate": 8.331015299026426e-05,
|
367 |
+
"loss": 0.4979,
|
368 |
+
"step": 1200
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.7,
|
372 |
+
"learning_rate": 8.303198887343532e-05,
|
373 |
+
"loss": 0.525,
|
374 |
+
"step": 1220
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.72,
|
378 |
+
"learning_rate": 8.27538247566064e-05,
|
379 |
+
"loss": 0.5036,
|
380 |
+
"step": 1240
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.75,
|
384 |
+
"learning_rate": 8.247566063977747e-05,
|
385 |
+
"loss": 0.5357,
|
386 |
+
"step": 1260
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 1.78,
|
390 |
+
"learning_rate": 8.219749652294854e-05,
|
391 |
+
"loss": 0.5345,
|
392 |
+
"step": 1280
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 1.81,
|
396 |
+
"learning_rate": 8.191933240611962e-05,
|
397 |
+
"loss": 0.499,
|
398 |
+
"step": 1300
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.84,
|
402 |
+
"learning_rate": 8.164116828929068e-05,
|
403 |
+
"loss": 0.4976,
|
404 |
+
"step": 1320
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 1.86,
|
408 |
+
"learning_rate": 8.136300417246176e-05,
|
409 |
+
"loss": 0.504,
|
410 |
+
"step": 1340
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.89,
|
414 |
+
"learning_rate": 8.108484005563283e-05,
|
415 |
+
"loss": 0.4888,
|
416 |
+
"step": 1360
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.92,
|
420 |
+
"learning_rate": 8.08066759388039e-05,
|
421 |
+
"loss": 0.5083,
|
422 |
+
"step": 1380
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.95,
|
426 |
+
"learning_rate": 8.052851182197498e-05,
|
427 |
+
"loss": 0.5361,
|
428 |
+
"step": 1400
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 1.97,
|
432 |
+
"learning_rate": 8.025034770514605e-05,
|
433 |
+
"loss": 0.5412,
|
434 |
+
"step": 1420
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 2.0,
|
438 |
+
"learning_rate": 7.99721835883171e-05,
|
439 |
+
"loss": 0.471,
|
440 |
+
"step": 1440
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 2.03,
|
444 |
+
"learning_rate": 7.969401947148818e-05,
|
445 |
+
"loss": 0.4617,
|
446 |
+
"step": 1460
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 2.06,
|
450 |
+
"learning_rate": 7.941585535465925e-05,
|
451 |
+
"loss": 0.468,
|
452 |
+
"step": 1480
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 2.09,
|
456 |
+
"learning_rate": 7.913769123783032e-05,
|
457 |
+
"loss": 0.4843,
|
458 |
+
"step": 1500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.11,
|
462 |
+
"learning_rate": 7.88595271210014e-05,
|
463 |
+
"loss": 0.4567,
|
464 |
+
"step": 1520
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 2.14,
|
468 |
+
"learning_rate": 7.858136300417247e-05,
|
469 |
+
"loss": 0.515,
|
470 |
+
"step": 1540
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 2.17,
|
474 |
+
"learning_rate": 7.830319888734354e-05,
|
475 |
+
"loss": 0.4594,
|
476 |
+
"step": 1560
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 2.2,
|
480 |
+
"learning_rate": 7.80250347705146e-05,
|
481 |
+
"loss": 0.4375,
|
482 |
+
"step": 1580
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 2.23,
|
486 |
+
"learning_rate": 7.774687065368567e-05,
|
487 |
+
"loss": 0.4916,
|
488 |
+
"step": 1600
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 2.25,
|
492 |
+
"learning_rate": 7.746870653685676e-05,
|
493 |
+
"loss": 0.5439,
|
494 |
+
"step": 1620
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 2.28,
|
498 |
+
"learning_rate": 7.719054242002782e-05,
|
499 |
+
"loss": 0.5093,
|
500 |
+
"step": 1640
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 2.31,
|
504 |
+
"learning_rate": 7.691237830319889e-05,
|
505 |
+
"loss": 0.5126,
|
506 |
+
"step": 1660
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 2.34,
|
510 |
+
"learning_rate": 7.663421418636996e-05,
|
511 |
+
"loss": 0.4866,
|
512 |
+
"step": 1680
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 2.36,
|
516 |
+
"learning_rate": 7.635605006954103e-05,
|
517 |
+
"loss": 0.4732,
|
518 |
+
"step": 1700
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 2.39,
|
522 |
+
"learning_rate": 7.60778859527121e-05,
|
523 |
+
"loss": 0.4682,
|
524 |
+
"step": 1720
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 2.42,
|
528 |
+
"learning_rate": 7.579972183588318e-05,
|
529 |
+
"loss": 0.5212,
|
530 |
+
"step": 1740
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 2.45,
|
534 |
+
"learning_rate": 7.552155771905425e-05,
|
535 |
+
"loss": 0.4307,
|
536 |
+
"step": 1760
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 2.48,
|
540 |
+
"learning_rate": 7.524339360222531e-05,
|
541 |
+
"loss": 0.4613,
|
542 |
+
"step": 1780
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 2.5,
|
546 |
+
"learning_rate": 7.496522948539638e-05,
|
547 |
+
"loss": 0.4379,
|
548 |
+
"step": 1800
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 2.53,
|
552 |
+
"learning_rate": 7.468706536856745e-05,
|
553 |
+
"loss": 0.4572,
|
554 |
+
"step": 1820
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 2.56,
|
558 |
+
"learning_rate": 7.440890125173853e-05,
|
559 |
+
"loss": 0.4637,
|
560 |
+
"step": 1840
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 2.59,
|
564 |
+
"learning_rate": 7.41307371349096e-05,
|
565 |
+
"loss": 0.4752,
|
566 |
+
"step": 1860
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 2.61,
|
570 |
+
"learning_rate": 7.385257301808067e-05,
|
571 |
+
"loss": 0.4982,
|
572 |
+
"step": 1880
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 2.64,
|
576 |
+
"learning_rate": 7.357440890125175e-05,
|
577 |
+
"loss": 0.4163,
|
578 |
+
"step": 1900
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 2.67,
|
582 |
+
"learning_rate": 7.329624478442282e-05,
|
583 |
+
"loss": 0.4906,
|
584 |
+
"step": 1920
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 2.7,
|
588 |
+
"learning_rate": 7.301808066759389e-05,
|
589 |
+
"loss": 0.4375,
|
590 |
+
"step": 1940
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.73,
|
594 |
+
"learning_rate": 7.273991655076495e-05,
|
595 |
+
"loss": 0.4402,
|
596 |
+
"step": 1960
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 2.75,
|
600 |
+
"learning_rate": 7.246175243393602e-05,
|
601 |
+
"loss": 0.52,
|
602 |
+
"step": 1980
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 2.78,
|
606 |
+
"learning_rate": 7.21835883171071e-05,
|
607 |
+
"loss": 0.4718,
|
608 |
+
"step": 2000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 2.81,
|
612 |
+
"learning_rate": 7.190542420027817e-05,
|
613 |
+
"loss": 0.5179,
|
614 |
+
"step": 2020
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 2.84,
|
618 |
+
"learning_rate": 7.162726008344924e-05,
|
619 |
+
"loss": 0.4774,
|
620 |
+
"step": 2040
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 2.87,
|
624 |
+
"learning_rate": 7.134909596662031e-05,
|
625 |
+
"loss": 0.477,
|
626 |
+
"step": 2060
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 2.89,
|
630 |
+
"learning_rate": 7.107093184979138e-05,
|
631 |
+
"loss": 0.4805,
|
632 |
+
"step": 2080
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.92,
|
636 |
+
"learning_rate": 7.079276773296244e-05,
|
637 |
+
"loss": 0.4507,
|
638 |
+
"step": 2100
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 2.95,
|
642 |
+
"learning_rate": 7.051460361613353e-05,
|
643 |
+
"loss": 0.451,
|
644 |
+
"step": 2120
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 2.98,
|
648 |
+
"learning_rate": 7.02364394993046e-05,
|
649 |
+
"loss": 0.4698,
|
650 |
+
"step": 2140
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 3.0,
|
654 |
+
"learning_rate": 6.995827538247566e-05,
|
655 |
+
"loss": 0.4611,
|
656 |
+
"step": 2160
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 3.03,
|
660 |
+
"learning_rate": 6.968011126564673e-05,
|
661 |
+
"loss": 0.4324,
|
662 |
+
"step": 2180
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 3.06,
|
666 |
+
"learning_rate": 6.94019471488178e-05,
|
667 |
+
"loss": 0.4085,
|
668 |
+
"step": 2200
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 3.09,
|
672 |
+
"learning_rate": 6.912378303198888e-05,
|
673 |
+
"loss": 0.406,
|
674 |
+
"step": 2220
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 3.12,
|
678 |
+
"learning_rate": 6.884561891515995e-05,
|
679 |
+
"loss": 0.4395,
|
680 |
+
"step": 2240
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 3.14,
|
684 |
+
"learning_rate": 6.856745479833102e-05,
|
685 |
+
"loss": 0.4557,
|
686 |
+
"step": 2260
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 3.17,
|
690 |
+
"learning_rate": 6.82892906815021e-05,
|
691 |
+
"loss": 0.4331,
|
692 |
+
"step": 2280
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 3.2,
|
696 |
+
"learning_rate": 6.801112656467315e-05,
|
697 |
+
"loss": 0.4544,
|
698 |
+
"step": 2300
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 3.23,
|
702 |
+
"learning_rate": 6.773296244784422e-05,
|
703 |
+
"loss": 0.4419,
|
704 |
+
"step": 2320
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 3.25,
|
708 |
+
"learning_rate": 6.74547983310153e-05,
|
709 |
+
"loss": 0.4362,
|
710 |
+
"step": 2340
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 3.28,
|
714 |
+
"learning_rate": 6.717663421418637e-05,
|
715 |
+
"loss": 0.4392,
|
716 |
+
"step": 2360
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 3.31,
|
720 |
+
"learning_rate": 6.689847009735744e-05,
|
721 |
+
"loss": 0.4633,
|
722 |
+
"step": 2380
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 3.34,
|
726 |
+
"learning_rate": 6.662030598052852e-05,
|
727 |
+
"loss": 0.3991,
|
728 |
+
"step": 2400
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 3.37,
|
732 |
+
"learning_rate": 6.634214186369958e-05,
|
733 |
+
"loss": 0.451,
|
734 |
+
"step": 2420
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 3.39,
|
738 |
+
"learning_rate": 6.606397774687066e-05,
|
739 |
+
"loss": 0.3981,
|
740 |
+
"step": 2440
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 3.42,
|
744 |
+
"learning_rate": 6.578581363004173e-05,
|
745 |
+
"loss": 0.4091,
|
746 |
+
"step": 2460
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 3.45,
|
750 |
+
"learning_rate": 6.55076495132128e-05,
|
751 |
+
"loss": 0.4431,
|
752 |
+
"step": 2480
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 3.48,
|
756 |
+
"learning_rate": 6.522948539638388e-05,
|
757 |
+
"loss": 0.4432,
|
758 |
+
"step": 2500
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 3.5,
|
762 |
+
"learning_rate": 6.495132127955494e-05,
|
763 |
+
"loss": 0.4572,
|
764 |
+
"step": 2520
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 3.53,
|
768 |
+
"learning_rate": 6.467315716272601e-05,
|
769 |
+
"loss": 0.4288,
|
770 |
+
"step": 2540
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 3.56,
|
774 |
+
"learning_rate": 6.439499304589708e-05,
|
775 |
+
"loss": 0.4195,
|
776 |
+
"step": 2560
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 3.59,
|
780 |
+
"learning_rate": 6.411682892906815e-05,
|
781 |
+
"loss": 0.4456,
|
782 |
+
"step": 2580
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 3.62,
|
786 |
+
"learning_rate": 6.383866481223923e-05,
|
787 |
+
"loss": 0.4164,
|
788 |
+
"step": 2600
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 3.64,
|
792 |
+
"learning_rate": 6.35605006954103e-05,
|
793 |
+
"loss": 0.4597,
|
794 |
+
"step": 2620
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 3.67,
|
798 |
+
"learning_rate": 6.328233657858137e-05,
|
799 |
+
"loss": 0.4074,
|
800 |
+
"step": 2640
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 3.7,
|
804 |
+
"learning_rate": 6.300417246175245e-05,
|
805 |
+
"loss": 0.449,
|
806 |
+
"step": 2660
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 3.73,
|
810 |
+
"learning_rate": 6.27260083449235e-05,
|
811 |
+
"loss": 0.4322,
|
812 |
+
"step": 2680
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 3.76,
|
816 |
+
"learning_rate": 6.244784422809457e-05,
|
817 |
+
"loss": 0.411,
|
818 |
+
"step": 2700
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.78,
|
822 |
+
"learning_rate": 6.216968011126565e-05,
|
823 |
+
"loss": 0.4289,
|
824 |
+
"step": 2720
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 3.81,
|
828 |
+
"learning_rate": 6.189151599443672e-05,
|
829 |
+
"loss": 0.4298,
|
830 |
+
"step": 2740
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 3.84,
|
834 |
+
"learning_rate": 6.161335187760779e-05,
|
835 |
+
"loss": 0.4303,
|
836 |
+
"step": 2760
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 3.87,
|
840 |
+
"learning_rate": 6.133518776077887e-05,
|
841 |
+
"loss": 0.4422,
|
842 |
+
"step": 2780
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 3.89,
|
846 |
+
"learning_rate": 6.105702364394992e-05,
|
847 |
+
"loss": 0.4473,
|
848 |
+
"step": 2800
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 3.92,
|
852 |
+
"learning_rate": 6.0778859527121e-05,
|
853 |
+
"loss": 0.4164,
|
854 |
+
"step": 2820
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 3.95,
|
858 |
+
"learning_rate": 6.0500695410292075e-05,
|
859 |
+
"loss": 0.4325,
|
860 |
+
"step": 2840
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 3.98,
|
864 |
+
"learning_rate": 6.022253129346315e-05,
|
865 |
+
"loss": 0.4368,
|
866 |
+
"step": 2860
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 4.01,
|
870 |
+
"learning_rate": 5.994436717663422e-05,
|
871 |
+
"loss": 0.4469,
|
872 |
+
"step": 2880
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 4.03,
|
876 |
+
"learning_rate": 5.966620305980529e-05,
|
877 |
+
"loss": 0.4146,
|
878 |
+
"step": 2900
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 4.06,
|
882 |
+
"learning_rate": 5.9388038942976354e-05,
|
883 |
+
"loss": 0.4111,
|
884 |
+
"step": 2920
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 4.09,
|
888 |
+
"learning_rate": 5.910987482614743e-05,
|
889 |
+
"loss": 0.444,
|
890 |
+
"step": 2940
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 4.12,
|
894 |
+
"learning_rate": 5.88317107093185e-05,
|
895 |
+
"loss": 0.4195,
|
896 |
+
"step": 2960
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 4.14,
|
900 |
+
"learning_rate": 5.855354659248957e-05,
|
901 |
+
"loss": 0.3457,
|
902 |
+
"step": 2980
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 4.17,
|
906 |
+
"learning_rate": 5.827538247566065e-05,
|
907 |
+
"loss": 0.3783,
|
908 |
+
"step": 3000
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 4.2,
|
912 |
+
"learning_rate": 5.7997218358831715e-05,
|
913 |
+
"loss": 0.407,
|
914 |
+
"step": 3020
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 4.23,
|
918 |
+
"learning_rate": 5.7719054242002777e-05,
|
919 |
+
"loss": 0.4187,
|
920 |
+
"step": 3040
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 4.26,
|
924 |
+
"learning_rate": 5.744089012517385e-05,
|
925 |
+
"loss": 0.3938,
|
926 |
+
"step": 3060
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 4.28,
|
930 |
+
"learning_rate": 5.7162726008344926e-05,
|
931 |
+
"loss": 0.3947,
|
932 |
+
"step": 3080
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 4.31,
|
936 |
+
"learning_rate": 5.6884561891515995e-05,
|
937 |
+
"loss": 0.4367,
|
938 |
+
"step": 3100
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 4.34,
|
942 |
+
"learning_rate": 5.660639777468707e-05,
|
943 |
+
"loss": 0.3908,
|
944 |
+
"step": 3120
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 4.37,
|
948 |
+
"learning_rate": 5.6328233657858144e-05,
|
949 |
+
"loss": 0.4016,
|
950 |
+
"step": 3140
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 4.39,
|
954 |
+
"learning_rate": 5.605006954102921e-05,
|
955 |
+
"loss": 0.3862,
|
956 |
+
"step": 3160
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 4.42,
|
960 |
+
"learning_rate": 5.5771905424200274e-05,
|
961 |
+
"loss": 0.3971,
|
962 |
+
"step": 3180
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 4.45,
|
966 |
+
"learning_rate": 5.549374130737135e-05,
|
967 |
+
"loss": 0.3688,
|
968 |
+
"step": 3200
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 4.48,
|
972 |
+
"learning_rate": 5.5215577190542424e-05,
|
973 |
+
"loss": 0.3961,
|
974 |
+
"step": 3220
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 4.51,
|
978 |
+
"learning_rate": 5.493741307371349e-05,
|
979 |
+
"loss": 0.4247,
|
980 |
+
"step": 3240
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 4.53,
|
984 |
+
"learning_rate": 5.465924895688457e-05,
|
985 |
+
"loss": 0.4154,
|
986 |
+
"step": 3260
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 4.56,
|
990 |
+
"learning_rate": 5.438108484005564e-05,
|
991 |
+
"loss": 0.3502,
|
992 |
+
"step": 3280
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 4.59,
|
996 |
+
"learning_rate": 5.41029207232267e-05,
|
997 |
+
"loss": 0.3485,
|
998 |
+
"step": 3300
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 4.62,
|
1002 |
+
"learning_rate": 5.382475660639778e-05,
|
1003 |
+
"loss": 0.4089,
|
1004 |
+
"step": 3320
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 4.65,
|
1008 |
+
"learning_rate": 5.3546592489568846e-05,
|
1009 |
+
"loss": 0.3659,
|
1010 |
+
"step": 3340
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 4.67,
|
1014 |
+
"learning_rate": 5.326842837273992e-05,
|
1015 |
+
"loss": 0.3838,
|
1016 |
+
"step": 3360
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 4.7,
|
1020 |
+
"learning_rate": 5.2990264255910996e-05,
|
1021 |
+
"loss": 0.3694,
|
1022 |
+
"step": 3380
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 4.73,
|
1026 |
+
"learning_rate": 5.2712100139082064e-05,
|
1027 |
+
"loss": 0.4135,
|
1028 |
+
"step": 3400
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 4.76,
|
1032 |
+
"learning_rate": 5.2433936022253126e-05,
|
1033 |
+
"loss": 0.3949,
|
1034 |
+
"step": 3420
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 4.78,
|
1038 |
+
"learning_rate": 5.21557719054242e-05,
|
1039 |
+
"loss": 0.4358,
|
1040 |
+
"step": 3440
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 4.81,
|
1044 |
+
"learning_rate": 5.1877607788595275e-05,
|
1045 |
+
"loss": 0.4285,
|
1046 |
+
"step": 3460
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 4.84,
|
1050 |
+
"learning_rate": 5.1599443671766344e-05,
|
1051 |
+
"loss": 0.374,
|
1052 |
+
"step": 3480
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 4.87,
|
1056 |
+
"learning_rate": 5.132127955493742e-05,
|
1057 |
+
"loss": 0.4047,
|
1058 |
+
"step": 3500
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 4.9,
|
1062 |
+
"learning_rate": 5.1043115438108493e-05,
|
1063 |
+
"loss": 0.3886,
|
1064 |
+
"step": 3520
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 4.92,
|
1068 |
+
"learning_rate": 5.0764951321279555e-05,
|
1069 |
+
"loss": 0.3783,
|
1070 |
+
"step": 3540
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 4.95,
|
1074 |
+
"learning_rate": 5.048678720445062e-05,
|
1075 |
+
"loss": 0.4301,
|
1076 |
+
"step": 3560
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 4.98,
|
1080 |
+
"learning_rate": 5.02086230876217e-05,
|
1081 |
+
"loss": 0.371,
|
1082 |
+
"step": 3580
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 5.01,
|
1086 |
+
"learning_rate": 4.993045897079277e-05,
|
1087 |
+
"loss": 0.3834,
|
1088 |
+
"step": 3600
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 5.03,
|
1092 |
+
"learning_rate": 4.965229485396384e-05,
|
1093 |
+
"loss": 0.382,
|
1094 |
+
"step": 3620
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 5.06,
|
1098 |
+
"learning_rate": 4.937413073713491e-05,
|
1099 |
+
"loss": 0.3744,
|
1100 |
+
"step": 3640
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 5.09,
|
1104 |
+
"learning_rate": 4.9095966620305984e-05,
|
1105 |
+
"loss": 0.3819,
|
1106 |
+
"step": 3660
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 5.12,
|
1110 |
+
"learning_rate": 4.881780250347706e-05,
|
1111 |
+
"loss": 0.3857,
|
1112 |
+
"step": 3680
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 5.15,
|
1116 |
+
"learning_rate": 4.853963838664812e-05,
|
1117 |
+
"loss": 0.4152,
|
1118 |
+
"step": 3700
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 5.17,
|
1122 |
+
"learning_rate": 4.8261474269819195e-05,
|
1123 |
+
"loss": 0.4125,
|
1124 |
+
"step": 3720
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 5.2,
|
1128 |
+
"learning_rate": 4.798331015299027e-05,
|
1129 |
+
"loss": 0.3337,
|
1130 |
+
"step": 3740
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 5.23,
|
1134 |
+
"learning_rate": 4.770514603616134e-05,
|
1135 |
+
"loss": 0.3294,
|
1136 |
+
"step": 3760
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 5.26,
|
1140 |
+
"learning_rate": 4.7426981919332406e-05,
|
1141 |
+
"loss": 0.3155,
|
1142 |
+
"step": 3780
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 5.29,
|
1146 |
+
"learning_rate": 4.714881780250348e-05,
|
1147 |
+
"loss": 0.3058,
|
1148 |
+
"step": 3800
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 5.31,
|
1152 |
+
"learning_rate": 4.687065368567455e-05,
|
1153 |
+
"loss": 0.3816,
|
1154 |
+
"step": 3820
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 5.34,
|
1158 |
+
"learning_rate": 4.659248956884562e-05,
|
1159 |
+
"loss": 0.3308,
|
1160 |
+
"step": 3840
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 5.37,
|
1164 |
+
"learning_rate": 4.631432545201669e-05,
|
1165 |
+
"loss": 0.3203,
|
1166 |
+
"step": 3860
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 5.4,
|
1170 |
+
"learning_rate": 4.603616133518776e-05,
|
1171 |
+
"loss": 0.3219,
|
1172 |
+
"step": 3880
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 5.42,
|
1176 |
+
"learning_rate": 4.5757997218358836e-05,
|
1177 |
+
"loss": 0.4005,
|
1178 |
+
"step": 3900
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 5.45,
|
1182 |
+
"learning_rate": 4.5479833101529904e-05,
|
1183 |
+
"loss": 0.3508,
|
1184 |
+
"step": 3920
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 5.48,
|
1188 |
+
"learning_rate": 4.520166898470097e-05,
|
1189 |
+
"loss": 0.3329,
|
1190 |
+
"step": 3940
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 5.51,
|
1194 |
+
"learning_rate": 4.492350486787205e-05,
|
1195 |
+
"loss": 0.3915,
|
1196 |
+
"step": 3960
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 5.54,
|
1200 |
+
"learning_rate": 4.464534075104312e-05,
|
1201 |
+
"loss": 0.3336,
|
1202 |
+
"step": 3980
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 5.56,
|
1206 |
+
"learning_rate": 4.436717663421418e-05,
|
1207 |
+
"loss": 0.3497,
|
1208 |
+
"step": 4000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 5.59,
|
1212 |
+
"learning_rate": 4.408901251738526e-05,
|
1213 |
+
"loss": 0.4179,
|
1214 |
+
"step": 4020
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 5.62,
|
1218 |
+
"learning_rate": 4.381084840055633e-05,
|
1219 |
+
"loss": 0.3408,
|
1220 |
+
"step": 4040
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 5.65,
|
1224 |
+
"learning_rate": 4.35326842837274e-05,
|
1225 |
+
"loss": 0.349,
|
1226 |
+
"step": 4060
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 5.67,
|
1230 |
+
"learning_rate": 4.325452016689847e-05,
|
1231 |
+
"loss": 0.395,
|
1232 |
+
"step": 4080
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 5.7,
|
1236 |
+
"learning_rate": 4.2976356050069544e-05,
|
1237 |
+
"loss": 0.3605,
|
1238 |
+
"step": 4100
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 5.73,
|
1242 |
+
"learning_rate": 4.269819193324062e-05,
|
1243 |
+
"loss": 0.4124,
|
1244 |
+
"step": 4120
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 5.76,
|
1248 |
+
"learning_rate": 4.242002781641168e-05,
|
1249 |
+
"loss": 0.3448,
|
1250 |
+
"step": 4140
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 5.79,
|
1254 |
+
"learning_rate": 4.2141863699582755e-05,
|
1255 |
+
"loss": 0.3499,
|
1256 |
+
"step": 4160
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 5.81,
|
1260 |
+
"learning_rate": 4.186369958275383e-05,
|
1261 |
+
"loss": 0.4002,
|
1262 |
+
"step": 4180
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 5.84,
|
1266 |
+
"learning_rate": 4.15855354659249e-05,
|
1267 |
+
"loss": 0.368,
|
1268 |
+
"step": 4200
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 5.87,
|
1272 |
+
"learning_rate": 4.130737134909597e-05,
|
1273 |
+
"loss": 0.3582,
|
1274 |
+
"step": 4220
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 5.9,
|
1278 |
+
"learning_rate": 4.102920723226704e-05,
|
1279 |
+
"loss": 0.3684,
|
1280 |
+
"step": 4240
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 5.92,
|
1284 |
+
"learning_rate": 4.075104311543811e-05,
|
1285 |
+
"loss": 0.3802,
|
1286 |
+
"step": 4260
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 5.95,
|
1290 |
+
"learning_rate": 4.0472878998609185e-05,
|
1291 |
+
"loss": 0.3775,
|
1292 |
+
"step": 4280
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 5.98,
|
1296 |
+
"learning_rate": 4.019471488178025e-05,
|
1297 |
+
"loss": 0.3537,
|
1298 |
+
"step": 4300
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 6.01,
|
1302 |
+
"learning_rate": 3.991655076495132e-05,
|
1303 |
+
"loss": 0.3692,
|
1304 |
+
"step": 4320
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 6.04,
|
1308 |
+
"learning_rate": 3.9638386648122396e-05,
|
1309 |
+
"loss": 0.3038,
|
1310 |
+
"step": 4340
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 6.06,
|
1314 |
+
"learning_rate": 3.9360222531293464e-05,
|
1315 |
+
"loss": 0.2944,
|
1316 |
+
"step": 4360
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 6.09,
|
1320 |
+
"learning_rate": 3.908205841446453e-05,
|
1321 |
+
"loss": 0.3075,
|
1322 |
+
"step": 4380
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 6.12,
|
1326 |
+
"learning_rate": 3.880389429763561e-05,
|
1327 |
+
"loss": 0.2942,
|
1328 |
+
"step": 4400
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 6.15,
|
1332 |
+
"learning_rate": 3.852573018080668e-05,
|
1333 |
+
"loss": 0.3304,
|
1334 |
+
"step": 4420
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 6.18,
|
1338 |
+
"learning_rate": 3.8247566063977743e-05,
|
1339 |
+
"loss": 0.3522,
|
1340 |
+
"step": 4440
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 6.2,
|
1344 |
+
"learning_rate": 3.796940194714882e-05,
|
1345 |
+
"loss": 0.3178,
|
1346 |
+
"step": 4460
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 6.23,
|
1350 |
+
"learning_rate": 3.769123783031989e-05,
|
1351 |
+
"loss": 0.3312,
|
1352 |
+
"step": 4480
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 6.26,
|
1356 |
+
"learning_rate": 3.741307371349096e-05,
|
1357 |
+
"loss": 0.3769,
|
1358 |
+
"step": 4500
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 6.29,
|
1362 |
+
"learning_rate": 3.713490959666203e-05,
|
1363 |
+
"loss": 0.3356,
|
1364 |
+
"step": 4520
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 6.31,
|
1368 |
+
"learning_rate": 3.6856745479833105e-05,
|
1369 |
+
"loss": 0.3059,
|
1370 |
+
"step": 4540
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 6.34,
|
1374 |
+
"learning_rate": 3.657858136300417e-05,
|
1375 |
+
"loss": 0.3415,
|
1376 |
+
"step": 4560
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 6.37,
|
1380 |
+
"learning_rate": 3.630041724617525e-05,
|
1381 |
+
"loss": 0.351,
|
1382 |
+
"step": 4580
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 6.4,
|
1386 |
+
"learning_rate": 3.6022253129346316e-05,
|
1387 |
+
"loss": 0.326,
|
1388 |
+
"step": 4600
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 6.43,
|
1392 |
+
"learning_rate": 3.5744089012517384e-05,
|
1393 |
+
"loss": 0.3225,
|
1394 |
+
"step": 4620
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 6.45,
|
1398 |
+
"learning_rate": 3.546592489568846e-05,
|
1399 |
+
"loss": 0.3527,
|
1400 |
+
"step": 4640
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 6.48,
|
1404 |
+
"learning_rate": 3.518776077885953e-05,
|
1405 |
+
"loss": 0.3962,
|
1406 |
+
"step": 4660
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 6.51,
|
1410 |
+
"learning_rate": 3.4909596662030595e-05,
|
1411 |
+
"loss": 0.3648,
|
1412 |
+
"step": 4680
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 6.54,
|
1416 |
+
"learning_rate": 3.463143254520167e-05,
|
1417 |
+
"loss": 0.3316,
|
1418 |
+
"step": 4700
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 6.56,
|
1422 |
+
"learning_rate": 3.4353268428372745e-05,
|
1423 |
+
"loss": 0.3111,
|
1424 |
+
"step": 4720
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 6.59,
|
1428 |
+
"learning_rate": 3.407510431154381e-05,
|
1429 |
+
"loss": 0.2905,
|
1430 |
+
"step": 4740
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 6.62,
|
1434 |
+
"learning_rate": 3.379694019471488e-05,
|
1435 |
+
"loss": 0.3172,
|
1436 |
+
"step": 4760
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 6.65,
|
1440 |
+
"learning_rate": 3.3518776077885956e-05,
|
1441 |
+
"loss": 0.3378,
|
1442 |
+
"step": 4780
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 6.68,
|
1446 |
+
"learning_rate": 3.3240611961057024e-05,
|
1447 |
+
"loss": 0.3621,
|
1448 |
+
"step": 4800
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 6.7,
|
1452 |
+
"learning_rate": 3.296244784422809e-05,
|
1453 |
+
"loss": 0.3366,
|
1454 |
+
"step": 4820
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 6.73,
|
1458 |
+
"learning_rate": 3.268428372739917e-05,
|
1459 |
+
"loss": 0.3122,
|
1460 |
+
"step": 4840
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 6.76,
|
1464 |
+
"learning_rate": 3.240611961057024e-05,
|
1465 |
+
"loss": 0.3339,
|
1466 |
+
"step": 4860
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 6.79,
|
1470 |
+
"learning_rate": 3.212795549374131e-05,
|
1471 |
+
"loss": 0.3554,
|
1472 |
+
"step": 4880
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 6.82,
|
1476 |
+
"learning_rate": 3.184979137691238e-05,
|
1477 |
+
"loss": 0.3583,
|
1478 |
+
"step": 4900
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 6.84,
|
1482 |
+
"learning_rate": 3.1571627260083454e-05,
|
1483 |
+
"loss": 0.3682,
|
1484 |
+
"step": 4920
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 6.87,
|
1488 |
+
"learning_rate": 3.129346314325452e-05,
|
1489 |
+
"loss": 0.3189,
|
1490 |
+
"step": 4940
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 6.9,
|
1494 |
+
"learning_rate": 3.101529902642559e-05,
|
1495 |
+
"loss": 0.3654,
|
1496 |
+
"step": 4960
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 6.93,
|
1500 |
+
"learning_rate": 3.0737134909596665e-05,
|
1501 |
+
"loss": 0.3703,
|
1502 |
+
"step": 4980
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 6.95,
|
1506 |
+
"learning_rate": 3.0458970792767733e-05,
|
1507 |
+
"loss": 0.3582,
|
1508 |
+
"step": 5000
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 6.98,
|
1512 |
+
"learning_rate": 3.0180806675938804e-05,
|
1513 |
+
"loss": 0.3698,
|
1514 |
+
"step": 5020
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 7.01,
|
1518 |
+
"learning_rate": 2.990264255910988e-05,
|
1519 |
+
"loss": 0.3144,
|
1520 |
+
"step": 5040
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 7.04,
|
1524 |
+
"learning_rate": 2.9624478442280944e-05,
|
1525 |
+
"loss": 0.291,
|
1526 |
+
"step": 5060
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 7.07,
|
1530 |
+
"learning_rate": 2.934631432545202e-05,
|
1531 |
+
"loss": 0.3118,
|
1532 |
+
"step": 5080
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 7.09,
|
1536 |
+
"learning_rate": 2.906815020862309e-05,
|
1537 |
+
"loss": 0.3471,
|
1538 |
+
"step": 5100
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 7.12,
|
1542 |
+
"learning_rate": 2.878998609179416e-05,
|
1543 |
+
"loss": 0.3224,
|
1544 |
+
"step": 5120
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 7.15,
|
1548 |
+
"learning_rate": 2.851182197496523e-05,
|
1549 |
+
"loss": 0.3167,
|
1550 |
+
"step": 5140
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 7.18,
|
1554 |
+
"learning_rate": 2.8233657858136302e-05,
|
1555 |
+
"loss": 0.3203,
|
1556 |
+
"step": 5160
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 7.2,
|
1560 |
+
"learning_rate": 2.795549374130737e-05,
|
1561 |
+
"loss": 0.2913,
|
1562 |
+
"step": 5180
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 7.23,
|
1566 |
+
"learning_rate": 2.767732962447844e-05,
|
1567 |
+
"loss": 0.2995,
|
1568 |
+
"step": 5200
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 7.26,
|
1572 |
+
"learning_rate": 2.7399165507649516e-05,
|
1573 |
+
"loss": 0.3112,
|
1574 |
+
"step": 5220
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 7.29,
|
1578 |
+
"learning_rate": 2.7121001390820585e-05,
|
1579 |
+
"loss": 0.3293,
|
1580 |
+
"step": 5240
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 7.32,
|
1584 |
+
"learning_rate": 2.6842837273991656e-05,
|
1585 |
+
"loss": 0.2808,
|
1586 |
+
"step": 5260
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 7.34,
|
1590 |
+
"learning_rate": 2.6564673157162728e-05,
|
1591 |
+
"loss": 0.3126,
|
1592 |
+
"step": 5280
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 7.37,
|
1596 |
+
"learning_rate": 2.6286509040333796e-05,
|
1597 |
+
"loss": 0.2832,
|
1598 |
+
"step": 5300
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 7.4,
|
1602 |
+
"learning_rate": 2.6008344923504867e-05,
|
1603 |
+
"loss": 0.3096,
|
1604 |
+
"step": 5320
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 7.43,
|
1608 |
+
"learning_rate": 2.5730180806675942e-05,
|
1609 |
+
"loss": 0.3065,
|
1610 |
+
"step": 5340
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 7.45,
|
1614 |
+
"learning_rate": 2.5452016689847014e-05,
|
1615 |
+
"loss": 0.3326,
|
1616 |
+
"step": 5360
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 7.48,
|
1620 |
+
"learning_rate": 2.5173852573018082e-05,
|
1621 |
+
"loss": 0.326,
|
1622 |
+
"step": 5380
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 7.51,
|
1626 |
+
"learning_rate": 2.4895688456189153e-05,
|
1627 |
+
"loss": 0.3477,
|
1628 |
+
"step": 5400
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 7.54,
|
1632 |
+
"learning_rate": 2.4617524339360225e-05,
|
1633 |
+
"loss": 0.2976,
|
1634 |
+
"step": 5420
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 7.57,
|
1638 |
+
"learning_rate": 2.4339360222531293e-05,
|
1639 |
+
"loss": 0.3201,
|
1640 |
+
"step": 5440
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 7.59,
|
1644 |
+
"learning_rate": 2.4061196105702365e-05,
|
1645 |
+
"loss": 0.3338,
|
1646 |
+
"step": 5460
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 7.62,
|
1650 |
+
"learning_rate": 2.3783031988873436e-05,
|
1651 |
+
"loss": 0.324,
|
1652 |
+
"step": 5480
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 7.65,
|
1656 |
+
"learning_rate": 2.3504867872044508e-05,
|
1657 |
+
"loss": 0.3004,
|
1658 |
+
"step": 5500
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 7.68,
|
1662 |
+
"learning_rate": 2.322670375521558e-05,
|
1663 |
+
"loss": 0.3271,
|
1664 |
+
"step": 5520
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 7.71,
|
1668 |
+
"learning_rate": 2.2948539638386647e-05,
|
1669 |
+
"loss": 0.3379,
|
1670 |
+
"step": 5540
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 7.73,
|
1674 |
+
"learning_rate": 2.2670375521557722e-05,
|
1675 |
+
"loss": 0.284,
|
1676 |
+
"step": 5560
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 7.76,
|
1680 |
+
"learning_rate": 2.239221140472879e-05,
|
1681 |
+
"loss": 0.3185,
|
1682 |
+
"step": 5580
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 7.79,
|
1686 |
+
"learning_rate": 2.2114047287899862e-05,
|
1687 |
+
"loss": 0.3303,
|
1688 |
+
"step": 5600
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 7.82,
|
1692 |
+
"learning_rate": 2.1835883171070934e-05,
|
1693 |
+
"loss": 0.3107,
|
1694 |
+
"step": 5620
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 7.84,
|
1698 |
+
"learning_rate": 2.1557719054242005e-05,
|
1699 |
+
"loss": 0.3747,
|
1700 |
+
"step": 5640
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 7.87,
|
1704 |
+
"learning_rate": 2.1279554937413073e-05,
|
1705 |
+
"loss": 0.3003,
|
1706 |
+
"step": 5660
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 7.9,
|
1710 |
+
"learning_rate": 2.1001390820584145e-05,
|
1711 |
+
"loss": 0.3176,
|
1712 |
+
"step": 5680
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 7.93,
|
1716 |
+
"learning_rate": 2.0723226703755216e-05,
|
1717 |
+
"loss": 0.2942,
|
1718 |
+
"step": 5700
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 7.96,
|
1722 |
+
"learning_rate": 2.0445062586926288e-05,
|
1723 |
+
"loss": 0.2932,
|
1724 |
+
"step": 5720
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 7.98,
|
1728 |
+
"learning_rate": 2.016689847009736e-05,
|
1729 |
+
"loss": 0.2919,
|
1730 |
+
"step": 5740
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 8.01,
|
1734 |
+
"learning_rate": 1.9888734353268428e-05,
|
1735 |
+
"loss": 0.2664,
|
1736 |
+
"step": 5760
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 8.04,
|
1740 |
+
"learning_rate": 1.96105702364395e-05,
|
1741 |
+
"loss": 0.2788,
|
1742 |
+
"step": 5780
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 8.07,
|
1746 |
+
"learning_rate": 1.933240611961057e-05,
|
1747 |
+
"loss": 0.2737,
|
1748 |
+
"step": 5800
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 8.09,
|
1752 |
+
"learning_rate": 1.9054242002781642e-05,
|
1753 |
+
"loss": 0.287,
|
1754 |
+
"step": 5820
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 8.12,
|
1758 |
+
"learning_rate": 1.8776077885952714e-05,
|
1759 |
+
"loss": 0.2771,
|
1760 |
+
"step": 5840
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 8.15,
|
1764 |
+
"learning_rate": 1.8497913769123785e-05,
|
1765 |
+
"loss": 0.2956,
|
1766 |
+
"step": 5860
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 8.18,
|
1770 |
+
"learning_rate": 1.8219749652294853e-05,
|
1771 |
+
"loss": 0.2837,
|
1772 |
+
"step": 5880
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 8.21,
|
1776 |
+
"learning_rate": 1.7941585535465928e-05,
|
1777 |
+
"loss": 0.3363,
|
1778 |
+
"step": 5900
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 8.23,
|
1782 |
+
"learning_rate": 1.7663421418636996e-05,
|
1783 |
+
"loss": 0.3007,
|
1784 |
+
"step": 5920
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 8.26,
|
1788 |
+
"learning_rate": 1.7385257301808068e-05,
|
1789 |
+
"loss": 0.3177,
|
1790 |
+
"step": 5940
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 8.29,
|
1794 |
+
"learning_rate": 1.710709318497914e-05,
|
1795 |
+
"loss": 0.3089,
|
1796 |
+
"step": 5960
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 8.32,
|
1800 |
+
"learning_rate": 1.6828929068150208e-05,
|
1801 |
+
"loss": 0.2654,
|
1802 |
+
"step": 5980
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 8.34,
|
1806 |
+
"learning_rate": 1.655076495132128e-05,
|
1807 |
+
"loss": 0.2763,
|
1808 |
+
"step": 6000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 8.37,
|
1812 |
+
"learning_rate": 1.627260083449235e-05,
|
1813 |
+
"loss": 0.3078,
|
1814 |
+
"step": 6020
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 8.4,
|
1818 |
+
"learning_rate": 1.5994436717663422e-05,
|
1819 |
+
"loss": 0.2756,
|
1820 |
+
"step": 6040
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 8.43,
|
1824 |
+
"learning_rate": 1.571627260083449e-05,
|
1825 |
+
"loss": 0.2902,
|
1826 |
+
"step": 6060
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 8.46,
|
1830 |
+
"learning_rate": 1.5438108484005565e-05,
|
1831 |
+
"loss": 0.2787,
|
1832 |
+
"step": 6080
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 8.48,
|
1836 |
+
"learning_rate": 1.5159944367176635e-05,
|
1837 |
+
"loss": 0.2727,
|
1838 |
+
"step": 6100
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 8.51,
|
1842 |
+
"learning_rate": 1.4881780250347707e-05,
|
1843 |
+
"loss": 0.2758,
|
1844 |
+
"step": 6120
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 8.54,
|
1848 |
+
"learning_rate": 1.4603616133518777e-05,
|
1849 |
+
"loss": 0.3012,
|
1850 |
+
"step": 6140
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 8.57,
|
1854 |
+
"learning_rate": 1.4325452016689846e-05,
|
1855 |
+
"loss": 0.3084,
|
1856 |
+
"step": 6160
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 8.6,
|
1860 |
+
"learning_rate": 1.404728789986092e-05,
|
1861 |
+
"loss": 0.2817,
|
1862 |
+
"step": 6180
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 8.62,
|
1866 |
+
"learning_rate": 1.376912378303199e-05,
|
1867 |
+
"loss": 0.3026,
|
1868 |
+
"step": 6200
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 8.65,
|
1872 |
+
"learning_rate": 1.349095966620306e-05,
|
1873 |
+
"loss": 0.3288,
|
1874 |
+
"step": 6220
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 8.68,
|
1878 |
+
"learning_rate": 1.3212795549374133e-05,
|
1879 |
+
"loss": 0.297,
|
1880 |
+
"step": 6240
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 8.71,
|
1884 |
+
"learning_rate": 1.2934631432545202e-05,
|
1885 |
+
"loss": 0.3321,
|
1886 |
+
"step": 6260
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 8.73,
|
1890 |
+
"learning_rate": 1.2656467315716272e-05,
|
1891 |
+
"loss": 0.2587,
|
1892 |
+
"step": 6280
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 8.76,
|
1896 |
+
"learning_rate": 1.2378303198887344e-05,
|
1897 |
+
"loss": 0.3322,
|
1898 |
+
"step": 6300
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 8.79,
|
1902 |
+
"learning_rate": 1.2100139082058415e-05,
|
1903 |
+
"loss": 0.2704,
|
1904 |
+
"step": 6320
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 8.82,
|
1908 |
+
"learning_rate": 1.1821974965229487e-05,
|
1909 |
+
"loss": 0.304,
|
1910 |
+
"step": 6340
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 8.85,
|
1914 |
+
"learning_rate": 1.1543810848400557e-05,
|
1915 |
+
"loss": 0.2947,
|
1916 |
+
"step": 6360
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 8.87,
|
1920 |
+
"learning_rate": 1.1265646731571628e-05,
|
1921 |
+
"loss": 0.2906,
|
1922 |
+
"step": 6380
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 8.9,
|
1926 |
+
"learning_rate": 1.0987482614742698e-05,
|
1927 |
+
"loss": 0.2907,
|
1928 |
+
"step": 6400
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 8.93,
|
1932 |
+
"learning_rate": 1.070931849791377e-05,
|
1933 |
+
"loss": 0.3304,
|
1934 |
+
"step": 6420
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 8.96,
|
1938 |
+
"learning_rate": 1.043115438108484e-05,
|
1939 |
+
"loss": 0.3089,
|
1940 |
+
"step": 6440
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 8.98,
|
1944 |
+
"learning_rate": 1.0152990264255911e-05,
|
1945 |
+
"loss": 0.2724,
|
1946 |
+
"step": 6460
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 9.01,
|
1950 |
+
"learning_rate": 9.874826147426983e-06,
|
1951 |
+
"loss": 0.286,
|
1952 |
+
"step": 6480
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 9.04,
|
1956 |
+
"learning_rate": 9.596662030598054e-06,
|
1957 |
+
"loss": 0.2835,
|
1958 |
+
"step": 6500
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 9.07,
|
1962 |
+
"learning_rate": 9.318497913769124e-06,
|
1963 |
+
"loss": 0.262,
|
1964 |
+
"step": 6520
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 9.1,
|
1968 |
+
"learning_rate": 9.040333796940195e-06,
|
1969 |
+
"loss": 0.2772,
|
1970 |
+
"step": 6540
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 9.12,
|
1974 |
+
"learning_rate": 8.762169680111267e-06,
|
1975 |
+
"loss": 0.2801,
|
1976 |
+
"step": 6560
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 9.15,
|
1980 |
+
"learning_rate": 8.484005563282337e-06,
|
1981 |
+
"loss": 0.2681,
|
1982 |
+
"step": 6580
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 9.18,
|
1986 |
+
"learning_rate": 8.205841446453408e-06,
|
1987 |
+
"loss": 0.2686,
|
1988 |
+
"step": 6600
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 9.21,
|
1992 |
+
"learning_rate": 7.92767732962448e-06,
|
1993 |
+
"loss": 0.2838,
|
1994 |
+
"step": 6620
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 9.24,
|
1998 |
+
"learning_rate": 7.64951321279555e-06,
|
1999 |
+
"loss": 0.2886,
|
2000 |
+
"step": 6640
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 9.26,
|
2004 |
+
"learning_rate": 7.37134909596662e-06,
|
2005 |
+
"loss": 0.2428,
|
2006 |
+
"step": 6660
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 9.29,
|
2010 |
+
"learning_rate": 7.093184979137692e-06,
|
2011 |
+
"loss": 0.2765,
|
2012 |
+
"step": 6680
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 9.32,
|
2016 |
+
"learning_rate": 6.815020862308763e-06,
|
2017 |
+
"loss": 0.2936,
|
2018 |
+
"step": 6700
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 9.35,
|
2022 |
+
"learning_rate": 6.536856745479833e-06,
|
2023 |
+
"loss": 0.3004,
|
2024 |
+
"step": 6720
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 9.37,
|
2028 |
+
"learning_rate": 6.258692628650904e-06,
|
2029 |
+
"loss": 0.26,
|
2030 |
+
"step": 6740
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 9.4,
|
2034 |
+
"learning_rate": 5.980528511821975e-06,
|
2035 |
+
"loss": 0.2806,
|
2036 |
+
"step": 6760
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 9.43,
|
2040 |
+
"learning_rate": 5.702364394993046e-06,
|
2041 |
+
"loss": 0.2628,
|
2042 |
+
"step": 6780
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 9.46,
|
2046 |
+
"learning_rate": 5.424200278164117e-06,
|
2047 |
+
"loss": 0.2636,
|
2048 |
+
"step": 6800
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 9.49,
|
2052 |
+
"learning_rate": 5.1460361613351884e-06,
|
2053 |
+
"loss": 0.2652,
|
2054 |
+
"step": 6820
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 9.51,
|
2058 |
+
"learning_rate": 4.867872044506259e-06,
|
2059 |
+
"loss": 0.2831,
|
2060 |
+
"step": 6840
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 9.54,
|
2064 |
+
"learning_rate": 4.58970792767733e-06,
|
2065 |
+
"loss": 0.2661,
|
2066 |
+
"step": 6860
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 9.57,
|
2070 |
+
"learning_rate": 4.3115438108484005e-06,
|
2071 |
+
"loss": 0.2653,
|
2072 |
+
"step": 6880
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 9.6,
|
2076 |
+
"learning_rate": 4.033379694019471e-06,
|
2077 |
+
"loss": 0.2693,
|
2078 |
+
"step": 6900
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 9.62,
|
2082 |
+
"learning_rate": 3.7552155771905427e-06,
|
2083 |
+
"loss": 0.2632,
|
2084 |
+
"step": 6920
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 9.65,
|
2088 |
+
"learning_rate": 3.4770514603616134e-06,
|
2089 |
+
"loss": 0.2788,
|
2090 |
+
"step": 6940
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 9.68,
|
2094 |
+
"learning_rate": 3.1988873435326845e-06,
|
2095 |
+
"loss": 0.3019,
|
2096 |
+
"step": 6960
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 9.71,
|
2100 |
+
"learning_rate": 2.9207232267037552e-06,
|
2101 |
+
"loss": 0.2778,
|
2102 |
+
"step": 6980
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 9.74,
|
2106 |
+
"learning_rate": 2.6425591098748263e-06,
|
2107 |
+
"loss": 0.3145,
|
2108 |
+
"step": 7000
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 9.76,
|
2112 |
+
"learning_rate": 2.364394993045897e-06,
|
2113 |
+
"loss": 0.2991,
|
2114 |
+
"step": 7020
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 9.79,
|
2118 |
+
"learning_rate": 2.086230876216968e-06,
|
2119 |
+
"loss": 0.2819,
|
2120 |
+
"step": 7040
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 9.82,
|
2124 |
+
"learning_rate": 1.8080667593880393e-06,
|
2125 |
+
"loss": 0.2817,
|
2126 |
+
"step": 7060
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 9.85,
|
2130 |
+
"learning_rate": 1.52990264255911e-06,
|
2131 |
+
"loss": 0.2689,
|
2132 |
+
"step": 7080
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 9.87,
|
2136 |
+
"learning_rate": 1.2517385257301808e-06,
|
2137 |
+
"loss": 0.2703,
|
2138 |
+
"step": 7100
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 9.9,
|
2142 |
+
"learning_rate": 9.735744089012517e-07,
|
2143 |
+
"loss": 0.2763,
|
2144 |
+
"step": 7120
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 9.93,
|
2148 |
+
"learning_rate": 6.954102920723227e-07,
|
2149 |
+
"loss": 0.2825,
|
2150 |
+
"step": 7140
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 9.96,
|
2154 |
+
"learning_rate": 4.1724617524339365e-07,
|
2155 |
+
"loss": 0.2849,
|
2156 |
+
"step": 7160
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 9.99,
|
2160 |
+
"learning_rate": 1.3908205841446452e-07,
|
2161 |
+
"loss": 0.3184,
|
2162 |
+
"step": 7180
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 10.0,
|
2166 |
+
"step": 7190,
|
2167 |
+
"total_flos": 2.920670798324695e+17,
|
2168 |
+
"train_loss": 0.4033946073105007,
|
2169 |
+
"train_runtime": 2282.7571,
|
2170 |
+
"train_samples_per_second": 6.295,
|
2171 |
+
"train_steps_per_second": 3.15
|
2172 |
+
}
|
2173 |
+
],
|
2174 |
+
"max_steps": 7190,
|
2175 |
+
"num_train_epochs": 10,
|
2176 |
+
"total_flos": 2.920670798324695e+17,
|
2177 |
+
"trial_name": null,
|
2178 |
+
"trial_params": null
|
2179 |
+
}
|