ruibin-wang commited on
Commit
6725f05
·
1 Parent(s): 343cfd6

Upload 11 files

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - customized
7
+ model-index:
8
+ - name: finetune_with_lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # finetune_with_lora
16
+
17
+ This model is a fine-tuned version of [ruibin-wang/llama-7b-hf](https://huggingface.co/ruibin-wang/llama-7b-hf) on the customized dataset.
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0001
37
+ - train_batch_size: 1
38
+ - eval_batch_size: 8
39
+ - seed: 42
40
+ - distributed_type: multi-GPU
41
+ - num_devices: 2
42
+ - total_train_batch_size: 2
43
+ - total_eval_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10.0
47
+
48
+ ### Training results
49
+
50
+
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.28.0.dev0
55
+ - Pytorch 1.13.1
56
+ - Datasets 2.10.1
57
+ - Tokenizers 0.13.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.4033946073105007,
4
+ "train_runtime": 2282.7571,
5
+ "train_samples": 1437,
6
+ "train_samples_per_second": 6.295,
7
+ "train_steps_per_second": 3.15
8
+ }
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ruibin-wang/llama-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "pad_token_id": -1,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.28.0.dev0",
22
+ "use_cache": true,
23
+ "vocab_size": 32000
24
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.0.dev0"
7
+ }
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee85c254efe3b49ff1e4ae48892d53dbf12334a78e9320ce84af0de8e57c5844
3
+ size 3500315603
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476835328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "",
3
+ "clean_up_tokenization_spaces": false,
4
+ "eos_token": "",
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "special_tokens_map_file": "/root/.cache/huggingface/hub/models--ruibin-wang--llama-7b-hf/snapshots/d2e4e3c6c145809f570bb9ada33e2734d305cecd/special_tokens_map.json",
7
+ "tokenizer_class": "LlamaTokenizer",
8
+ "unk_token": ""
9
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.4033946073105007,
4
+ "train_runtime": 2282.7571,
5
+ "train_samples": 1437,
6
+ "train_samples_per_second": 6.295,
7
+ "train_steps_per_second": 3.15
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "global_step": 7190,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "learning_rate": 9.972183588317107e-05,
13
+ "loss": 1.5922,
14
+ "step": 20
15
+ },
16
+ {
17
+ "epoch": 0.06,
18
+ "learning_rate": 9.944367176634215e-05,
19
+ "loss": 1.0766,
20
+ "step": 40
21
+ },
22
+ {
23
+ "epoch": 0.08,
24
+ "learning_rate": 9.916550764951322e-05,
25
+ "loss": 0.7023,
26
+ "step": 60
27
+ },
28
+ {
29
+ "epoch": 0.11,
30
+ "learning_rate": 9.888734353268429e-05,
31
+ "loss": 0.6458,
32
+ "step": 80
33
+ },
34
+ {
35
+ "epoch": 0.14,
36
+ "learning_rate": 9.860917941585536e-05,
37
+ "loss": 0.6244,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.17,
42
+ "learning_rate": 9.833101529902643e-05,
43
+ "loss": 0.5692,
44
+ "step": 120
45
+ },
46
+ {
47
+ "epoch": 0.19,
48
+ "learning_rate": 9.805285118219751e-05,
49
+ "loss": 0.5318,
50
+ "step": 140
51
+ },
52
+ {
53
+ "epoch": 0.22,
54
+ "learning_rate": 9.777468706536858e-05,
55
+ "loss": 0.6218,
56
+ "step": 160
57
+ },
58
+ {
59
+ "epoch": 0.25,
60
+ "learning_rate": 9.749652294853965e-05,
61
+ "loss": 0.5794,
62
+ "step": 180
63
+ },
64
+ {
65
+ "epoch": 0.28,
66
+ "learning_rate": 9.721835883171071e-05,
67
+ "loss": 0.591,
68
+ "step": 200
69
+ },
70
+ {
71
+ "epoch": 0.31,
72
+ "learning_rate": 9.694019471488178e-05,
73
+ "loss": 0.582,
74
+ "step": 220
75
+ },
76
+ {
77
+ "epoch": 0.33,
78
+ "learning_rate": 9.666203059805285e-05,
79
+ "loss": 0.6104,
80
+ "step": 240
81
+ },
82
+ {
83
+ "epoch": 0.36,
84
+ "learning_rate": 9.638386648122393e-05,
85
+ "loss": 0.5706,
86
+ "step": 260
87
+ },
88
+ {
89
+ "epoch": 0.39,
90
+ "learning_rate": 9.6105702364395e-05,
91
+ "loss": 0.6002,
92
+ "step": 280
93
+ },
94
+ {
95
+ "epoch": 0.42,
96
+ "learning_rate": 9.582753824756607e-05,
97
+ "loss": 0.5189,
98
+ "step": 300
99
+ },
100
+ {
101
+ "epoch": 0.45,
102
+ "learning_rate": 9.554937413073714e-05,
103
+ "loss": 0.5508,
104
+ "step": 320
105
+ },
106
+ {
107
+ "epoch": 0.47,
108
+ "learning_rate": 9.52712100139082e-05,
109
+ "loss": 0.5644,
110
+ "step": 340
111
+ },
112
+ {
113
+ "epoch": 0.5,
114
+ "learning_rate": 9.499304589707929e-05,
115
+ "loss": 0.5367,
116
+ "step": 360
117
+ },
118
+ {
119
+ "epoch": 0.53,
120
+ "learning_rate": 9.471488178025035e-05,
121
+ "loss": 0.5947,
122
+ "step": 380
123
+ },
124
+ {
125
+ "epoch": 0.56,
126
+ "learning_rate": 9.443671766342142e-05,
127
+ "loss": 0.5636,
128
+ "step": 400
129
+ },
130
+ {
131
+ "epoch": 0.58,
132
+ "learning_rate": 9.41585535465925e-05,
133
+ "loss": 0.5824,
134
+ "step": 420
135
+ },
136
+ {
137
+ "epoch": 0.61,
138
+ "learning_rate": 9.388038942976356e-05,
139
+ "loss": 0.6374,
140
+ "step": 440
141
+ },
142
+ {
143
+ "epoch": 0.64,
144
+ "learning_rate": 9.360222531293463e-05,
145
+ "loss": 0.5929,
146
+ "step": 460
147
+ },
148
+ {
149
+ "epoch": 0.67,
150
+ "learning_rate": 9.332406119610571e-05,
151
+ "loss": 0.5689,
152
+ "step": 480
153
+ },
154
+ {
155
+ "epoch": 0.7,
156
+ "learning_rate": 9.304589707927678e-05,
157
+ "loss": 0.5719,
158
+ "step": 500
159
+ },
160
+ {
161
+ "epoch": 0.72,
162
+ "learning_rate": 9.276773296244784e-05,
163
+ "loss": 0.5469,
164
+ "step": 520
165
+ },
166
+ {
167
+ "epoch": 0.75,
168
+ "learning_rate": 9.248956884561893e-05,
169
+ "loss": 0.5986,
170
+ "step": 540
171
+ },
172
+ {
173
+ "epoch": 0.78,
174
+ "learning_rate": 9.221140472878998e-05,
175
+ "loss": 0.5868,
176
+ "step": 560
177
+ },
178
+ {
179
+ "epoch": 0.81,
180
+ "learning_rate": 9.193324061196106e-05,
181
+ "loss": 0.596,
182
+ "step": 580
183
+ },
184
+ {
185
+ "epoch": 0.83,
186
+ "learning_rate": 9.165507649513213e-05,
187
+ "loss": 0.5653,
188
+ "step": 600
189
+ },
190
+ {
191
+ "epoch": 0.86,
192
+ "learning_rate": 9.13769123783032e-05,
193
+ "loss": 0.5527,
194
+ "step": 620
195
+ },
196
+ {
197
+ "epoch": 0.89,
198
+ "learning_rate": 9.109874826147428e-05,
199
+ "loss": 0.5296,
200
+ "step": 640
201
+ },
202
+ {
203
+ "epoch": 0.92,
204
+ "learning_rate": 9.082058414464535e-05,
205
+ "loss": 0.5399,
206
+ "step": 660
207
+ },
208
+ {
209
+ "epoch": 0.95,
210
+ "learning_rate": 9.054242002781642e-05,
211
+ "loss": 0.6171,
212
+ "step": 680
213
+ },
214
+ {
215
+ "epoch": 0.97,
216
+ "learning_rate": 9.026425591098748e-05,
217
+ "loss": 0.5256,
218
+ "step": 700
219
+ },
220
+ {
221
+ "epoch": 1.0,
222
+ "learning_rate": 8.998609179415855e-05,
223
+ "loss": 0.5679,
224
+ "step": 720
225
+ },
226
+ {
227
+ "epoch": 1.03,
228
+ "learning_rate": 8.970792767732963e-05,
229
+ "loss": 0.5813,
230
+ "step": 740
231
+ },
232
+ {
233
+ "epoch": 1.06,
234
+ "learning_rate": 8.94297635605007e-05,
235
+ "loss": 0.5831,
236
+ "step": 760
237
+ },
238
+ {
239
+ "epoch": 1.08,
240
+ "learning_rate": 8.915159944367177e-05,
241
+ "loss": 0.5042,
242
+ "step": 780
243
+ },
244
+ {
245
+ "epoch": 1.11,
246
+ "learning_rate": 8.887343532684285e-05,
247
+ "loss": 0.4984,
248
+ "step": 800
249
+ },
250
+ {
251
+ "epoch": 1.14,
252
+ "learning_rate": 8.859527121001391e-05,
253
+ "loss": 0.5397,
254
+ "step": 820
255
+ },
256
+ {
257
+ "epoch": 1.17,
258
+ "learning_rate": 8.831710709318498e-05,
259
+ "loss": 0.4707,
260
+ "step": 840
261
+ },
262
+ {
263
+ "epoch": 1.2,
264
+ "learning_rate": 8.803894297635606e-05,
265
+ "loss": 0.5099,
266
+ "step": 860
267
+ },
268
+ {
269
+ "epoch": 1.22,
270
+ "learning_rate": 8.776077885952713e-05,
271
+ "loss": 0.508,
272
+ "step": 880
273
+ },
274
+ {
275
+ "epoch": 1.25,
276
+ "learning_rate": 8.74826147426982e-05,
277
+ "loss": 0.5305,
278
+ "step": 900
279
+ },
280
+ {
281
+ "epoch": 1.28,
282
+ "learning_rate": 8.720445062586928e-05,
283
+ "loss": 0.5146,
284
+ "step": 920
285
+ },
286
+ {
287
+ "epoch": 1.31,
288
+ "learning_rate": 8.692628650904033e-05,
289
+ "loss": 0.5567,
290
+ "step": 940
291
+ },
292
+ {
293
+ "epoch": 1.34,
294
+ "learning_rate": 8.664812239221141e-05,
295
+ "loss": 0.4569,
296
+ "step": 960
297
+ },
298
+ {
299
+ "epoch": 1.36,
300
+ "learning_rate": 8.636995827538248e-05,
301
+ "loss": 0.5321,
302
+ "step": 980
303
+ },
304
+ {
305
+ "epoch": 1.39,
306
+ "learning_rate": 8.609179415855355e-05,
307
+ "loss": 0.5039,
308
+ "step": 1000
309
+ },
310
+ {
311
+ "epoch": 1.42,
312
+ "learning_rate": 8.581363004172463e-05,
313
+ "loss": 0.5198,
314
+ "step": 1020
315
+ },
316
+ {
317
+ "epoch": 1.45,
318
+ "learning_rate": 8.55354659248957e-05,
319
+ "loss": 0.5124,
320
+ "step": 1040
321
+ },
322
+ {
323
+ "epoch": 1.47,
324
+ "learning_rate": 8.525730180806675e-05,
325
+ "loss": 0.4706,
326
+ "step": 1060
327
+ },
328
+ {
329
+ "epoch": 1.5,
330
+ "learning_rate": 8.497913769123783e-05,
331
+ "loss": 0.5389,
332
+ "step": 1080
333
+ },
334
+ {
335
+ "epoch": 1.53,
336
+ "learning_rate": 8.47009735744089e-05,
337
+ "loss": 0.5279,
338
+ "step": 1100
339
+ },
340
+ {
341
+ "epoch": 1.56,
342
+ "learning_rate": 8.442280945757997e-05,
343
+ "loss": 0.5317,
344
+ "step": 1120
345
+ },
346
+ {
347
+ "epoch": 1.59,
348
+ "learning_rate": 8.414464534075105e-05,
349
+ "loss": 0.549,
350
+ "step": 1140
351
+ },
352
+ {
353
+ "epoch": 1.61,
354
+ "learning_rate": 8.386648122392212e-05,
355
+ "loss": 0.5743,
356
+ "step": 1160
357
+ },
358
+ {
359
+ "epoch": 1.64,
360
+ "learning_rate": 8.358831710709319e-05,
361
+ "loss": 0.5269,
362
+ "step": 1180
363
+ },
364
+ {
365
+ "epoch": 1.67,
366
+ "learning_rate": 8.331015299026426e-05,
367
+ "loss": 0.4979,
368
+ "step": 1200
369
+ },
370
+ {
371
+ "epoch": 1.7,
372
+ "learning_rate": 8.303198887343532e-05,
373
+ "loss": 0.525,
374
+ "step": 1220
375
+ },
376
+ {
377
+ "epoch": 1.72,
378
+ "learning_rate": 8.27538247566064e-05,
379
+ "loss": 0.5036,
380
+ "step": 1240
381
+ },
382
+ {
383
+ "epoch": 1.75,
384
+ "learning_rate": 8.247566063977747e-05,
385
+ "loss": 0.5357,
386
+ "step": 1260
387
+ },
388
+ {
389
+ "epoch": 1.78,
390
+ "learning_rate": 8.219749652294854e-05,
391
+ "loss": 0.5345,
392
+ "step": 1280
393
+ },
394
+ {
395
+ "epoch": 1.81,
396
+ "learning_rate": 8.191933240611962e-05,
397
+ "loss": 0.499,
398
+ "step": 1300
399
+ },
400
+ {
401
+ "epoch": 1.84,
402
+ "learning_rate": 8.164116828929068e-05,
403
+ "loss": 0.4976,
404
+ "step": 1320
405
+ },
406
+ {
407
+ "epoch": 1.86,
408
+ "learning_rate": 8.136300417246176e-05,
409
+ "loss": 0.504,
410
+ "step": 1340
411
+ },
412
+ {
413
+ "epoch": 1.89,
414
+ "learning_rate": 8.108484005563283e-05,
415
+ "loss": 0.4888,
416
+ "step": 1360
417
+ },
418
+ {
419
+ "epoch": 1.92,
420
+ "learning_rate": 8.08066759388039e-05,
421
+ "loss": 0.5083,
422
+ "step": 1380
423
+ },
424
+ {
425
+ "epoch": 1.95,
426
+ "learning_rate": 8.052851182197498e-05,
427
+ "loss": 0.5361,
428
+ "step": 1400
429
+ },
430
+ {
431
+ "epoch": 1.97,
432
+ "learning_rate": 8.025034770514605e-05,
433
+ "loss": 0.5412,
434
+ "step": 1420
435
+ },
436
+ {
437
+ "epoch": 2.0,
438
+ "learning_rate": 7.99721835883171e-05,
439
+ "loss": 0.471,
440
+ "step": 1440
441
+ },
442
+ {
443
+ "epoch": 2.03,
444
+ "learning_rate": 7.969401947148818e-05,
445
+ "loss": 0.4617,
446
+ "step": 1460
447
+ },
448
+ {
449
+ "epoch": 2.06,
450
+ "learning_rate": 7.941585535465925e-05,
451
+ "loss": 0.468,
452
+ "step": 1480
453
+ },
454
+ {
455
+ "epoch": 2.09,
456
+ "learning_rate": 7.913769123783032e-05,
457
+ "loss": 0.4843,
458
+ "step": 1500
459
+ },
460
+ {
461
+ "epoch": 2.11,
462
+ "learning_rate": 7.88595271210014e-05,
463
+ "loss": 0.4567,
464
+ "step": 1520
465
+ },
466
+ {
467
+ "epoch": 2.14,
468
+ "learning_rate": 7.858136300417247e-05,
469
+ "loss": 0.515,
470
+ "step": 1540
471
+ },
472
+ {
473
+ "epoch": 2.17,
474
+ "learning_rate": 7.830319888734354e-05,
475
+ "loss": 0.4594,
476
+ "step": 1560
477
+ },
478
+ {
479
+ "epoch": 2.2,
480
+ "learning_rate": 7.80250347705146e-05,
481
+ "loss": 0.4375,
482
+ "step": 1580
483
+ },
484
+ {
485
+ "epoch": 2.23,
486
+ "learning_rate": 7.774687065368567e-05,
487
+ "loss": 0.4916,
488
+ "step": 1600
489
+ },
490
+ {
491
+ "epoch": 2.25,
492
+ "learning_rate": 7.746870653685676e-05,
493
+ "loss": 0.5439,
494
+ "step": 1620
495
+ },
496
+ {
497
+ "epoch": 2.28,
498
+ "learning_rate": 7.719054242002782e-05,
499
+ "loss": 0.5093,
500
+ "step": 1640
501
+ },
502
+ {
503
+ "epoch": 2.31,
504
+ "learning_rate": 7.691237830319889e-05,
505
+ "loss": 0.5126,
506
+ "step": 1660
507
+ },
508
+ {
509
+ "epoch": 2.34,
510
+ "learning_rate": 7.663421418636996e-05,
511
+ "loss": 0.4866,
512
+ "step": 1680
513
+ },
514
+ {
515
+ "epoch": 2.36,
516
+ "learning_rate": 7.635605006954103e-05,
517
+ "loss": 0.4732,
518
+ "step": 1700
519
+ },
520
+ {
521
+ "epoch": 2.39,
522
+ "learning_rate": 7.60778859527121e-05,
523
+ "loss": 0.4682,
524
+ "step": 1720
525
+ },
526
+ {
527
+ "epoch": 2.42,
528
+ "learning_rate": 7.579972183588318e-05,
529
+ "loss": 0.5212,
530
+ "step": 1740
531
+ },
532
+ {
533
+ "epoch": 2.45,
534
+ "learning_rate": 7.552155771905425e-05,
535
+ "loss": 0.4307,
536
+ "step": 1760
537
+ },
538
+ {
539
+ "epoch": 2.48,
540
+ "learning_rate": 7.524339360222531e-05,
541
+ "loss": 0.4613,
542
+ "step": 1780
543
+ },
544
+ {
545
+ "epoch": 2.5,
546
+ "learning_rate": 7.496522948539638e-05,
547
+ "loss": 0.4379,
548
+ "step": 1800
549
+ },
550
+ {
551
+ "epoch": 2.53,
552
+ "learning_rate": 7.468706536856745e-05,
553
+ "loss": 0.4572,
554
+ "step": 1820
555
+ },
556
+ {
557
+ "epoch": 2.56,
558
+ "learning_rate": 7.440890125173853e-05,
559
+ "loss": 0.4637,
560
+ "step": 1840
561
+ },
562
+ {
563
+ "epoch": 2.59,
564
+ "learning_rate": 7.41307371349096e-05,
565
+ "loss": 0.4752,
566
+ "step": 1860
567
+ },
568
+ {
569
+ "epoch": 2.61,
570
+ "learning_rate": 7.385257301808067e-05,
571
+ "loss": 0.4982,
572
+ "step": 1880
573
+ },
574
+ {
575
+ "epoch": 2.64,
576
+ "learning_rate": 7.357440890125175e-05,
577
+ "loss": 0.4163,
578
+ "step": 1900
579
+ },
580
+ {
581
+ "epoch": 2.67,
582
+ "learning_rate": 7.329624478442282e-05,
583
+ "loss": 0.4906,
584
+ "step": 1920
585
+ },
586
+ {
587
+ "epoch": 2.7,
588
+ "learning_rate": 7.301808066759389e-05,
589
+ "loss": 0.4375,
590
+ "step": 1940
591
+ },
592
+ {
593
+ "epoch": 2.73,
594
+ "learning_rate": 7.273991655076495e-05,
595
+ "loss": 0.4402,
596
+ "step": 1960
597
+ },
598
+ {
599
+ "epoch": 2.75,
600
+ "learning_rate": 7.246175243393602e-05,
601
+ "loss": 0.52,
602
+ "step": 1980
603
+ },
604
+ {
605
+ "epoch": 2.78,
606
+ "learning_rate": 7.21835883171071e-05,
607
+ "loss": 0.4718,
608
+ "step": 2000
609
+ },
610
+ {
611
+ "epoch": 2.81,
612
+ "learning_rate": 7.190542420027817e-05,
613
+ "loss": 0.5179,
614
+ "step": 2020
615
+ },
616
+ {
617
+ "epoch": 2.84,
618
+ "learning_rate": 7.162726008344924e-05,
619
+ "loss": 0.4774,
620
+ "step": 2040
621
+ },
622
+ {
623
+ "epoch": 2.87,
624
+ "learning_rate": 7.134909596662031e-05,
625
+ "loss": 0.477,
626
+ "step": 2060
627
+ },
628
+ {
629
+ "epoch": 2.89,
630
+ "learning_rate": 7.107093184979138e-05,
631
+ "loss": 0.4805,
632
+ "step": 2080
633
+ },
634
+ {
635
+ "epoch": 2.92,
636
+ "learning_rate": 7.079276773296244e-05,
637
+ "loss": 0.4507,
638
+ "step": 2100
639
+ },
640
+ {
641
+ "epoch": 2.95,
642
+ "learning_rate": 7.051460361613353e-05,
643
+ "loss": 0.451,
644
+ "step": 2120
645
+ },
646
+ {
647
+ "epoch": 2.98,
648
+ "learning_rate": 7.02364394993046e-05,
649
+ "loss": 0.4698,
650
+ "step": 2140
651
+ },
652
+ {
653
+ "epoch": 3.0,
654
+ "learning_rate": 6.995827538247566e-05,
655
+ "loss": 0.4611,
656
+ "step": 2160
657
+ },
658
+ {
659
+ "epoch": 3.03,
660
+ "learning_rate": 6.968011126564673e-05,
661
+ "loss": 0.4324,
662
+ "step": 2180
663
+ },
664
+ {
665
+ "epoch": 3.06,
666
+ "learning_rate": 6.94019471488178e-05,
667
+ "loss": 0.4085,
668
+ "step": 2200
669
+ },
670
+ {
671
+ "epoch": 3.09,
672
+ "learning_rate": 6.912378303198888e-05,
673
+ "loss": 0.406,
674
+ "step": 2220
675
+ },
676
+ {
677
+ "epoch": 3.12,
678
+ "learning_rate": 6.884561891515995e-05,
679
+ "loss": 0.4395,
680
+ "step": 2240
681
+ },
682
+ {
683
+ "epoch": 3.14,
684
+ "learning_rate": 6.856745479833102e-05,
685
+ "loss": 0.4557,
686
+ "step": 2260
687
+ },
688
+ {
689
+ "epoch": 3.17,
690
+ "learning_rate": 6.82892906815021e-05,
691
+ "loss": 0.4331,
692
+ "step": 2280
693
+ },
694
+ {
695
+ "epoch": 3.2,
696
+ "learning_rate": 6.801112656467315e-05,
697
+ "loss": 0.4544,
698
+ "step": 2300
699
+ },
700
+ {
701
+ "epoch": 3.23,
702
+ "learning_rate": 6.773296244784422e-05,
703
+ "loss": 0.4419,
704
+ "step": 2320
705
+ },
706
+ {
707
+ "epoch": 3.25,
708
+ "learning_rate": 6.74547983310153e-05,
709
+ "loss": 0.4362,
710
+ "step": 2340
711
+ },
712
+ {
713
+ "epoch": 3.28,
714
+ "learning_rate": 6.717663421418637e-05,
715
+ "loss": 0.4392,
716
+ "step": 2360
717
+ },
718
+ {
719
+ "epoch": 3.31,
720
+ "learning_rate": 6.689847009735744e-05,
721
+ "loss": 0.4633,
722
+ "step": 2380
723
+ },
724
+ {
725
+ "epoch": 3.34,
726
+ "learning_rate": 6.662030598052852e-05,
727
+ "loss": 0.3991,
728
+ "step": 2400
729
+ },
730
+ {
731
+ "epoch": 3.37,
732
+ "learning_rate": 6.634214186369958e-05,
733
+ "loss": 0.451,
734
+ "step": 2420
735
+ },
736
+ {
737
+ "epoch": 3.39,
738
+ "learning_rate": 6.606397774687066e-05,
739
+ "loss": 0.3981,
740
+ "step": 2440
741
+ },
742
+ {
743
+ "epoch": 3.42,
744
+ "learning_rate": 6.578581363004173e-05,
745
+ "loss": 0.4091,
746
+ "step": 2460
747
+ },
748
+ {
749
+ "epoch": 3.45,
750
+ "learning_rate": 6.55076495132128e-05,
751
+ "loss": 0.4431,
752
+ "step": 2480
753
+ },
754
+ {
755
+ "epoch": 3.48,
756
+ "learning_rate": 6.522948539638388e-05,
757
+ "loss": 0.4432,
758
+ "step": 2500
759
+ },
760
+ {
761
+ "epoch": 3.5,
762
+ "learning_rate": 6.495132127955494e-05,
763
+ "loss": 0.4572,
764
+ "step": 2520
765
+ },
766
+ {
767
+ "epoch": 3.53,
768
+ "learning_rate": 6.467315716272601e-05,
769
+ "loss": 0.4288,
770
+ "step": 2540
771
+ },
772
+ {
773
+ "epoch": 3.56,
774
+ "learning_rate": 6.439499304589708e-05,
775
+ "loss": 0.4195,
776
+ "step": 2560
777
+ },
778
+ {
779
+ "epoch": 3.59,
780
+ "learning_rate": 6.411682892906815e-05,
781
+ "loss": 0.4456,
782
+ "step": 2580
783
+ },
784
+ {
785
+ "epoch": 3.62,
786
+ "learning_rate": 6.383866481223923e-05,
787
+ "loss": 0.4164,
788
+ "step": 2600
789
+ },
790
+ {
791
+ "epoch": 3.64,
792
+ "learning_rate": 6.35605006954103e-05,
793
+ "loss": 0.4597,
794
+ "step": 2620
795
+ },
796
+ {
797
+ "epoch": 3.67,
798
+ "learning_rate": 6.328233657858137e-05,
799
+ "loss": 0.4074,
800
+ "step": 2640
801
+ },
802
+ {
803
+ "epoch": 3.7,
804
+ "learning_rate": 6.300417246175245e-05,
805
+ "loss": 0.449,
806
+ "step": 2660
807
+ },
808
+ {
809
+ "epoch": 3.73,
810
+ "learning_rate": 6.27260083449235e-05,
811
+ "loss": 0.4322,
812
+ "step": 2680
813
+ },
814
+ {
815
+ "epoch": 3.76,
816
+ "learning_rate": 6.244784422809457e-05,
817
+ "loss": 0.411,
818
+ "step": 2700
819
+ },
820
+ {
821
+ "epoch": 3.78,
822
+ "learning_rate": 6.216968011126565e-05,
823
+ "loss": 0.4289,
824
+ "step": 2720
825
+ },
826
+ {
827
+ "epoch": 3.81,
828
+ "learning_rate": 6.189151599443672e-05,
829
+ "loss": 0.4298,
830
+ "step": 2740
831
+ },
832
+ {
833
+ "epoch": 3.84,
834
+ "learning_rate": 6.161335187760779e-05,
835
+ "loss": 0.4303,
836
+ "step": 2760
837
+ },
838
+ {
839
+ "epoch": 3.87,
840
+ "learning_rate": 6.133518776077887e-05,
841
+ "loss": 0.4422,
842
+ "step": 2780
843
+ },
844
+ {
845
+ "epoch": 3.89,
846
+ "learning_rate": 6.105702364394992e-05,
847
+ "loss": 0.4473,
848
+ "step": 2800
849
+ },
850
+ {
851
+ "epoch": 3.92,
852
+ "learning_rate": 6.0778859527121e-05,
853
+ "loss": 0.4164,
854
+ "step": 2820
855
+ },
856
+ {
857
+ "epoch": 3.95,
858
+ "learning_rate": 6.0500695410292075e-05,
859
+ "loss": 0.4325,
860
+ "step": 2840
861
+ },
862
+ {
863
+ "epoch": 3.98,
864
+ "learning_rate": 6.022253129346315e-05,
865
+ "loss": 0.4368,
866
+ "step": 2860
867
+ },
868
+ {
869
+ "epoch": 4.01,
870
+ "learning_rate": 5.994436717663422e-05,
871
+ "loss": 0.4469,
872
+ "step": 2880
873
+ },
874
+ {
875
+ "epoch": 4.03,
876
+ "learning_rate": 5.966620305980529e-05,
877
+ "loss": 0.4146,
878
+ "step": 2900
879
+ },
880
+ {
881
+ "epoch": 4.06,
882
+ "learning_rate": 5.9388038942976354e-05,
883
+ "loss": 0.4111,
884
+ "step": 2920
885
+ },
886
+ {
887
+ "epoch": 4.09,
888
+ "learning_rate": 5.910987482614743e-05,
889
+ "loss": 0.444,
890
+ "step": 2940
891
+ },
892
+ {
893
+ "epoch": 4.12,
894
+ "learning_rate": 5.88317107093185e-05,
895
+ "loss": 0.4195,
896
+ "step": 2960
897
+ },
898
+ {
899
+ "epoch": 4.14,
900
+ "learning_rate": 5.855354659248957e-05,
901
+ "loss": 0.3457,
902
+ "step": 2980
903
+ },
904
+ {
905
+ "epoch": 4.17,
906
+ "learning_rate": 5.827538247566065e-05,
907
+ "loss": 0.3783,
908
+ "step": 3000
909
+ },
910
+ {
911
+ "epoch": 4.2,
912
+ "learning_rate": 5.7997218358831715e-05,
913
+ "loss": 0.407,
914
+ "step": 3020
915
+ },
916
+ {
917
+ "epoch": 4.23,
918
+ "learning_rate": 5.7719054242002777e-05,
919
+ "loss": 0.4187,
920
+ "step": 3040
921
+ },
922
+ {
923
+ "epoch": 4.26,
924
+ "learning_rate": 5.744089012517385e-05,
925
+ "loss": 0.3938,
926
+ "step": 3060
927
+ },
928
+ {
929
+ "epoch": 4.28,
930
+ "learning_rate": 5.7162726008344926e-05,
931
+ "loss": 0.3947,
932
+ "step": 3080
933
+ },
934
+ {
935
+ "epoch": 4.31,
936
+ "learning_rate": 5.6884561891515995e-05,
937
+ "loss": 0.4367,
938
+ "step": 3100
939
+ },
940
+ {
941
+ "epoch": 4.34,
942
+ "learning_rate": 5.660639777468707e-05,
943
+ "loss": 0.3908,
944
+ "step": 3120
945
+ },
946
+ {
947
+ "epoch": 4.37,
948
+ "learning_rate": 5.6328233657858144e-05,
949
+ "loss": 0.4016,
950
+ "step": 3140
951
+ },
952
+ {
953
+ "epoch": 4.39,
954
+ "learning_rate": 5.605006954102921e-05,
955
+ "loss": 0.3862,
956
+ "step": 3160
957
+ },
958
+ {
959
+ "epoch": 4.42,
960
+ "learning_rate": 5.5771905424200274e-05,
961
+ "loss": 0.3971,
962
+ "step": 3180
963
+ },
964
+ {
965
+ "epoch": 4.45,
966
+ "learning_rate": 5.549374130737135e-05,
967
+ "loss": 0.3688,
968
+ "step": 3200
969
+ },
970
+ {
971
+ "epoch": 4.48,
972
+ "learning_rate": 5.5215577190542424e-05,
973
+ "loss": 0.3961,
974
+ "step": 3220
975
+ },
976
+ {
977
+ "epoch": 4.51,
978
+ "learning_rate": 5.493741307371349e-05,
979
+ "loss": 0.4247,
980
+ "step": 3240
981
+ },
982
+ {
983
+ "epoch": 4.53,
984
+ "learning_rate": 5.465924895688457e-05,
985
+ "loss": 0.4154,
986
+ "step": 3260
987
+ },
988
+ {
989
+ "epoch": 4.56,
990
+ "learning_rate": 5.438108484005564e-05,
991
+ "loss": 0.3502,
992
+ "step": 3280
993
+ },
994
+ {
995
+ "epoch": 4.59,
996
+ "learning_rate": 5.41029207232267e-05,
997
+ "loss": 0.3485,
998
+ "step": 3300
999
+ },
1000
+ {
1001
+ "epoch": 4.62,
1002
+ "learning_rate": 5.382475660639778e-05,
1003
+ "loss": 0.4089,
1004
+ "step": 3320
1005
+ },
1006
+ {
1007
+ "epoch": 4.65,
1008
+ "learning_rate": 5.3546592489568846e-05,
1009
+ "loss": 0.3659,
1010
+ "step": 3340
1011
+ },
1012
+ {
1013
+ "epoch": 4.67,
1014
+ "learning_rate": 5.326842837273992e-05,
1015
+ "loss": 0.3838,
1016
+ "step": 3360
1017
+ },
1018
+ {
1019
+ "epoch": 4.7,
1020
+ "learning_rate": 5.2990264255910996e-05,
1021
+ "loss": 0.3694,
1022
+ "step": 3380
1023
+ },
1024
+ {
1025
+ "epoch": 4.73,
1026
+ "learning_rate": 5.2712100139082064e-05,
1027
+ "loss": 0.4135,
1028
+ "step": 3400
1029
+ },
1030
+ {
1031
+ "epoch": 4.76,
1032
+ "learning_rate": 5.2433936022253126e-05,
1033
+ "loss": 0.3949,
1034
+ "step": 3420
1035
+ },
1036
+ {
1037
+ "epoch": 4.78,
1038
+ "learning_rate": 5.21557719054242e-05,
1039
+ "loss": 0.4358,
1040
+ "step": 3440
1041
+ },
1042
+ {
1043
+ "epoch": 4.81,
1044
+ "learning_rate": 5.1877607788595275e-05,
1045
+ "loss": 0.4285,
1046
+ "step": 3460
1047
+ },
1048
+ {
1049
+ "epoch": 4.84,
1050
+ "learning_rate": 5.1599443671766344e-05,
1051
+ "loss": 0.374,
1052
+ "step": 3480
1053
+ },
1054
+ {
1055
+ "epoch": 4.87,
1056
+ "learning_rate": 5.132127955493742e-05,
1057
+ "loss": 0.4047,
1058
+ "step": 3500
1059
+ },
1060
+ {
1061
+ "epoch": 4.9,
1062
+ "learning_rate": 5.1043115438108493e-05,
1063
+ "loss": 0.3886,
1064
+ "step": 3520
1065
+ },
1066
+ {
1067
+ "epoch": 4.92,
1068
+ "learning_rate": 5.0764951321279555e-05,
1069
+ "loss": 0.3783,
1070
+ "step": 3540
1071
+ },
1072
+ {
1073
+ "epoch": 4.95,
1074
+ "learning_rate": 5.048678720445062e-05,
1075
+ "loss": 0.4301,
1076
+ "step": 3560
1077
+ },
1078
+ {
1079
+ "epoch": 4.98,
1080
+ "learning_rate": 5.02086230876217e-05,
1081
+ "loss": 0.371,
1082
+ "step": 3580
1083
+ },
1084
+ {
1085
+ "epoch": 5.01,
1086
+ "learning_rate": 4.993045897079277e-05,
1087
+ "loss": 0.3834,
1088
+ "step": 3600
1089
+ },
1090
+ {
1091
+ "epoch": 5.03,
1092
+ "learning_rate": 4.965229485396384e-05,
1093
+ "loss": 0.382,
1094
+ "step": 3620
1095
+ },
1096
+ {
1097
+ "epoch": 5.06,
1098
+ "learning_rate": 4.937413073713491e-05,
1099
+ "loss": 0.3744,
1100
+ "step": 3640
1101
+ },
1102
+ {
1103
+ "epoch": 5.09,
1104
+ "learning_rate": 4.9095966620305984e-05,
1105
+ "loss": 0.3819,
1106
+ "step": 3660
1107
+ },
1108
+ {
1109
+ "epoch": 5.12,
1110
+ "learning_rate": 4.881780250347706e-05,
1111
+ "loss": 0.3857,
1112
+ "step": 3680
1113
+ },
1114
+ {
1115
+ "epoch": 5.15,
1116
+ "learning_rate": 4.853963838664812e-05,
1117
+ "loss": 0.4152,
1118
+ "step": 3700
1119
+ },
1120
+ {
1121
+ "epoch": 5.17,
1122
+ "learning_rate": 4.8261474269819195e-05,
1123
+ "loss": 0.4125,
1124
+ "step": 3720
1125
+ },
1126
+ {
1127
+ "epoch": 5.2,
1128
+ "learning_rate": 4.798331015299027e-05,
1129
+ "loss": 0.3337,
1130
+ "step": 3740
1131
+ },
1132
+ {
1133
+ "epoch": 5.23,
1134
+ "learning_rate": 4.770514603616134e-05,
1135
+ "loss": 0.3294,
1136
+ "step": 3760
1137
+ },
1138
+ {
1139
+ "epoch": 5.26,
1140
+ "learning_rate": 4.7426981919332406e-05,
1141
+ "loss": 0.3155,
1142
+ "step": 3780
1143
+ },
1144
+ {
1145
+ "epoch": 5.29,
1146
+ "learning_rate": 4.714881780250348e-05,
1147
+ "loss": 0.3058,
1148
+ "step": 3800
1149
+ },
1150
+ {
1151
+ "epoch": 5.31,
1152
+ "learning_rate": 4.687065368567455e-05,
1153
+ "loss": 0.3816,
1154
+ "step": 3820
1155
+ },
1156
+ {
1157
+ "epoch": 5.34,
1158
+ "learning_rate": 4.659248956884562e-05,
1159
+ "loss": 0.3308,
1160
+ "step": 3840
1161
+ },
1162
+ {
1163
+ "epoch": 5.37,
1164
+ "learning_rate": 4.631432545201669e-05,
1165
+ "loss": 0.3203,
1166
+ "step": 3860
1167
+ },
1168
+ {
1169
+ "epoch": 5.4,
1170
+ "learning_rate": 4.603616133518776e-05,
1171
+ "loss": 0.3219,
1172
+ "step": 3880
1173
+ },
1174
+ {
1175
+ "epoch": 5.42,
1176
+ "learning_rate": 4.5757997218358836e-05,
1177
+ "loss": 0.4005,
1178
+ "step": 3900
1179
+ },
1180
+ {
1181
+ "epoch": 5.45,
1182
+ "learning_rate": 4.5479833101529904e-05,
1183
+ "loss": 0.3508,
1184
+ "step": 3920
1185
+ },
1186
+ {
1187
+ "epoch": 5.48,
1188
+ "learning_rate": 4.520166898470097e-05,
1189
+ "loss": 0.3329,
1190
+ "step": 3940
1191
+ },
1192
+ {
1193
+ "epoch": 5.51,
1194
+ "learning_rate": 4.492350486787205e-05,
1195
+ "loss": 0.3915,
1196
+ "step": 3960
1197
+ },
1198
+ {
1199
+ "epoch": 5.54,
1200
+ "learning_rate": 4.464534075104312e-05,
1201
+ "loss": 0.3336,
1202
+ "step": 3980
1203
+ },
1204
+ {
1205
+ "epoch": 5.56,
1206
+ "learning_rate": 4.436717663421418e-05,
1207
+ "loss": 0.3497,
1208
+ "step": 4000
1209
+ },
1210
+ {
1211
+ "epoch": 5.59,
1212
+ "learning_rate": 4.408901251738526e-05,
1213
+ "loss": 0.4179,
1214
+ "step": 4020
1215
+ },
1216
+ {
1217
+ "epoch": 5.62,
1218
+ "learning_rate": 4.381084840055633e-05,
1219
+ "loss": 0.3408,
1220
+ "step": 4040
1221
+ },
1222
+ {
1223
+ "epoch": 5.65,
1224
+ "learning_rate": 4.35326842837274e-05,
1225
+ "loss": 0.349,
1226
+ "step": 4060
1227
+ },
1228
+ {
1229
+ "epoch": 5.67,
1230
+ "learning_rate": 4.325452016689847e-05,
1231
+ "loss": 0.395,
1232
+ "step": 4080
1233
+ },
1234
+ {
1235
+ "epoch": 5.7,
1236
+ "learning_rate": 4.2976356050069544e-05,
1237
+ "loss": 0.3605,
1238
+ "step": 4100
1239
+ },
1240
+ {
1241
+ "epoch": 5.73,
1242
+ "learning_rate": 4.269819193324062e-05,
1243
+ "loss": 0.4124,
1244
+ "step": 4120
1245
+ },
1246
+ {
1247
+ "epoch": 5.76,
1248
+ "learning_rate": 4.242002781641168e-05,
1249
+ "loss": 0.3448,
1250
+ "step": 4140
1251
+ },
1252
+ {
1253
+ "epoch": 5.79,
1254
+ "learning_rate": 4.2141863699582755e-05,
1255
+ "loss": 0.3499,
1256
+ "step": 4160
1257
+ },
1258
+ {
1259
+ "epoch": 5.81,
1260
+ "learning_rate": 4.186369958275383e-05,
1261
+ "loss": 0.4002,
1262
+ "step": 4180
1263
+ },
1264
+ {
1265
+ "epoch": 5.84,
1266
+ "learning_rate": 4.15855354659249e-05,
1267
+ "loss": 0.368,
1268
+ "step": 4200
1269
+ },
1270
+ {
1271
+ "epoch": 5.87,
1272
+ "learning_rate": 4.130737134909597e-05,
1273
+ "loss": 0.3582,
1274
+ "step": 4220
1275
+ },
1276
+ {
1277
+ "epoch": 5.9,
1278
+ "learning_rate": 4.102920723226704e-05,
1279
+ "loss": 0.3684,
1280
+ "step": 4240
1281
+ },
1282
+ {
1283
+ "epoch": 5.92,
1284
+ "learning_rate": 4.075104311543811e-05,
1285
+ "loss": 0.3802,
1286
+ "step": 4260
1287
+ },
1288
+ {
1289
+ "epoch": 5.95,
1290
+ "learning_rate": 4.0472878998609185e-05,
1291
+ "loss": 0.3775,
1292
+ "step": 4280
1293
+ },
1294
+ {
1295
+ "epoch": 5.98,
1296
+ "learning_rate": 4.019471488178025e-05,
1297
+ "loss": 0.3537,
1298
+ "step": 4300
1299
+ },
1300
+ {
1301
+ "epoch": 6.01,
1302
+ "learning_rate": 3.991655076495132e-05,
1303
+ "loss": 0.3692,
1304
+ "step": 4320
1305
+ },
1306
+ {
1307
+ "epoch": 6.04,
1308
+ "learning_rate": 3.9638386648122396e-05,
1309
+ "loss": 0.3038,
1310
+ "step": 4340
1311
+ },
1312
+ {
1313
+ "epoch": 6.06,
1314
+ "learning_rate": 3.9360222531293464e-05,
1315
+ "loss": 0.2944,
1316
+ "step": 4360
1317
+ },
1318
+ {
1319
+ "epoch": 6.09,
1320
+ "learning_rate": 3.908205841446453e-05,
1321
+ "loss": 0.3075,
1322
+ "step": 4380
1323
+ },
1324
+ {
1325
+ "epoch": 6.12,
1326
+ "learning_rate": 3.880389429763561e-05,
1327
+ "loss": 0.2942,
1328
+ "step": 4400
1329
+ },
1330
+ {
1331
+ "epoch": 6.15,
1332
+ "learning_rate": 3.852573018080668e-05,
1333
+ "loss": 0.3304,
1334
+ "step": 4420
1335
+ },
1336
+ {
1337
+ "epoch": 6.18,
1338
+ "learning_rate": 3.8247566063977743e-05,
1339
+ "loss": 0.3522,
1340
+ "step": 4440
1341
+ },
1342
+ {
1343
+ "epoch": 6.2,
1344
+ "learning_rate": 3.796940194714882e-05,
1345
+ "loss": 0.3178,
1346
+ "step": 4460
1347
+ },
1348
+ {
1349
+ "epoch": 6.23,
1350
+ "learning_rate": 3.769123783031989e-05,
1351
+ "loss": 0.3312,
1352
+ "step": 4480
1353
+ },
1354
+ {
1355
+ "epoch": 6.26,
1356
+ "learning_rate": 3.741307371349096e-05,
1357
+ "loss": 0.3769,
1358
+ "step": 4500
1359
+ },
1360
+ {
1361
+ "epoch": 6.29,
1362
+ "learning_rate": 3.713490959666203e-05,
1363
+ "loss": 0.3356,
1364
+ "step": 4520
1365
+ },
1366
+ {
1367
+ "epoch": 6.31,
1368
+ "learning_rate": 3.6856745479833105e-05,
1369
+ "loss": 0.3059,
1370
+ "step": 4540
1371
+ },
1372
+ {
1373
+ "epoch": 6.34,
1374
+ "learning_rate": 3.657858136300417e-05,
1375
+ "loss": 0.3415,
1376
+ "step": 4560
1377
+ },
1378
+ {
1379
+ "epoch": 6.37,
1380
+ "learning_rate": 3.630041724617525e-05,
1381
+ "loss": 0.351,
1382
+ "step": 4580
1383
+ },
1384
+ {
1385
+ "epoch": 6.4,
1386
+ "learning_rate": 3.6022253129346316e-05,
1387
+ "loss": 0.326,
1388
+ "step": 4600
1389
+ },
1390
+ {
1391
+ "epoch": 6.43,
1392
+ "learning_rate": 3.5744089012517384e-05,
1393
+ "loss": 0.3225,
1394
+ "step": 4620
1395
+ },
1396
+ {
1397
+ "epoch": 6.45,
1398
+ "learning_rate": 3.546592489568846e-05,
1399
+ "loss": 0.3527,
1400
+ "step": 4640
1401
+ },
1402
+ {
1403
+ "epoch": 6.48,
1404
+ "learning_rate": 3.518776077885953e-05,
1405
+ "loss": 0.3962,
1406
+ "step": 4660
1407
+ },
1408
+ {
1409
+ "epoch": 6.51,
1410
+ "learning_rate": 3.4909596662030595e-05,
1411
+ "loss": 0.3648,
1412
+ "step": 4680
1413
+ },
1414
+ {
1415
+ "epoch": 6.54,
1416
+ "learning_rate": 3.463143254520167e-05,
1417
+ "loss": 0.3316,
1418
+ "step": 4700
1419
+ },
1420
+ {
1421
+ "epoch": 6.56,
1422
+ "learning_rate": 3.4353268428372745e-05,
1423
+ "loss": 0.3111,
1424
+ "step": 4720
1425
+ },
1426
+ {
1427
+ "epoch": 6.59,
1428
+ "learning_rate": 3.407510431154381e-05,
1429
+ "loss": 0.2905,
1430
+ "step": 4740
1431
+ },
1432
+ {
1433
+ "epoch": 6.62,
1434
+ "learning_rate": 3.379694019471488e-05,
1435
+ "loss": 0.3172,
1436
+ "step": 4760
1437
+ },
1438
+ {
1439
+ "epoch": 6.65,
1440
+ "learning_rate": 3.3518776077885956e-05,
1441
+ "loss": 0.3378,
1442
+ "step": 4780
1443
+ },
1444
+ {
1445
+ "epoch": 6.68,
1446
+ "learning_rate": 3.3240611961057024e-05,
1447
+ "loss": 0.3621,
1448
+ "step": 4800
1449
+ },
1450
+ {
1451
+ "epoch": 6.7,
1452
+ "learning_rate": 3.296244784422809e-05,
1453
+ "loss": 0.3366,
1454
+ "step": 4820
1455
+ },
1456
+ {
1457
+ "epoch": 6.73,
1458
+ "learning_rate": 3.268428372739917e-05,
1459
+ "loss": 0.3122,
1460
+ "step": 4840
1461
+ },
1462
+ {
1463
+ "epoch": 6.76,
1464
+ "learning_rate": 3.240611961057024e-05,
1465
+ "loss": 0.3339,
1466
+ "step": 4860
1467
+ },
1468
+ {
1469
+ "epoch": 6.79,
1470
+ "learning_rate": 3.212795549374131e-05,
1471
+ "loss": 0.3554,
1472
+ "step": 4880
1473
+ },
1474
+ {
1475
+ "epoch": 6.82,
1476
+ "learning_rate": 3.184979137691238e-05,
1477
+ "loss": 0.3583,
1478
+ "step": 4900
1479
+ },
1480
+ {
1481
+ "epoch": 6.84,
1482
+ "learning_rate": 3.1571627260083454e-05,
1483
+ "loss": 0.3682,
1484
+ "step": 4920
1485
+ },
1486
+ {
1487
+ "epoch": 6.87,
1488
+ "learning_rate": 3.129346314325452e-05,
1489
+ "loss": 0.3189,
1490
+ "step": 4940
1491
+ },
1492
+ {
1493
+ "epoch": 6.9,
1494
+ "learning_rate": 3.101529902642559e-05,
1495
+ "loss": 0.3654,
1496
+ "step": 4960
1497
+ },
1498
+ {
1499
+ "epoch": 6.93,
1500
+ "learning_rate": 3.0737134909596665e-05,
1501
+ "loss": 0.3703,
1502
+ "step": 4980
1503
+ },
1504
+ {
1505
+ "epoch": 6.95,
1506
+ "learning_rate": 3.0458970792767733e-05,
1507
+ "loss": 0.3582,
1508
+ "step": 5000
1509
+ },
1510
+ {
1511
+ "epoch": 6.98,
1512
+ "learning_rate": 3.0180806675938804e-05,
1513
+ "loss": 0.3698,
1514
+ "step": 5020
1515
+ },
1516
+ {
1517
+ "epoch": 7.01,
1518
+ "learning_rate": 2.990264255910988e-05,
1519
+ "loss": 0.3144,
1520
+ "step": 5040
1521
+ },
1522
+ {
1523
+ "epoch": 7.04,
1524
+ "learning_rate": 2.9624478442280944e-05,
1525
+ "loss": 0.291,
1526
+ "step": 5060
1527
+ },
1528
+ {
1529
+ "epoch": 7.07,
1530
+ "learning_rate": 2.934631432545202e-05,
1531
+ "loss": 0.3118,
1532
+ "step": 5080
1533
+ },
1534
+ {
1535
+ "epoch": 7.09,
1536
+ "learning_rate": 2.906815020862309e-05,
1537
+ "loss": 0.3471,
1538
+ "step": 5100
1539
+ },
1540
+ {
1541
+ "epoch": 7.12,
1542
+ "learning_rate": 2.878998609179416e-05,
1543
+ "loss": 0.3224,
1544
+ "step": 5120
1545
+ },
1546
+ {
1547
+ "epoch": 7.15,
1548
+ "learning_rate": 2.851182197496523e-05,
1549
+ "loss": 0.3167,
1550
+ "step": 5140
1551
+ },
1552
+ {
1553
+ "epoch": 7.18,
1554
+ "learning_rate": 2.8233657858136302e-05,
1555
+ "loss": 0.3203,
1556
+ "step": 5160
1557
+ },
1558
+ {
1559
+ "epoch": 7.2,
1560
+ "learning_rate": 2.795549374130737e-05,
1561
+ "loss": 0.2913,
1562
+ "step": 5180
1563
+ },
1564
+ {
1565
+ "epoch": 7.23,
1566
+ "learning_rate": 2.767732962447844e-05,
1567
+ "loss": 0.2995,
1568
+ "step": 5200
1569
+ },
1570
+ {
1571
+ "epoch": 7.26,
1572
+ "learning_rate": 2.7399165507649516e-05,
1573
+ "loss": 0.3112,
1574
+ "step": 5220
1575
+ },
1576
+ {
1577
+ "epoch": 7.29,
1578
+ "learning_rate": 2.7121001390820585e-05,
1579
+ "loss": 0.3293,
1580
+ "step": 5240
1581
+ },
1582
+ {
1583
+ "epoch": 7.32,
1584
+ "learning_rate": 2.6842837273991656e-05,
1585
+ "loss": 0.2808,
1586
+ "step": 5260
1587
+ },
1588
+ {
1589
+ "epoch": 7.34,
1590
+ "learning_rate": 2.6564673157162728e-05,
1591
+ "loss": 0.3126,
1592
+ "step": 5280
1593
+ },
1594
+ {
1595
+ "epoch": 7.37,
1596
+ "learning_rate": 2.6286509040333796e-05,
1597
+ "loss": 0.2832,
1598
+ "step": 5300
1599
+ },
1600
+ {
1601
+ "epoch": 7.4,
1602
+ "learning_rate": 2.6008344923504867e-05,
1603
+ "loss": 0.3096,
1604
+ "step": 5320
1605
+ },
1606
+ {
1607
+ "epoch": 7.43,
1608
+ "learning_rate": 2.5730180806675942e-05,
1609
+ "loss": 0.3065,
1610
+ "step": 5340
1611
+ },
1612
+ {
1613
+ "epoch": 7.45,
1614
+ "learning_rate": 2.5452016689847014e-05,
1615
+ "loss": 0.3326,
1616
+ "step": 5360
1617
+ },
1618
+ {
1619
+ "epoch": 7.48,
1620
+ "learning_rate": 2.5173852573018082e-05,
1621
+ "loss": 0.326,
1622
+ "step": 5380
1623
+ },
1624
+ {
1625
+ "epoch": 7.51,
1626
+ "learning_rate": 2.4895688456189153e-05,
1627
+ "loss": 0.3477,
1628
+ "step": 5400
1629
+ },
1630
+ {
1631
+ "epoch": 7.54,
1632
+ "learning_rate": 2.4617524339360225e-05,
1633
+ "loss": 0.2976,
1634
+ "step": 5420
1635
+ },
1636
+ {
1637
+ "epoch": 7.57,
1638
+ "learning_rate": 2.4339360222531293e-05,
1639
+ "loss": 0.3201,
1640
+ "step": 5440
1641
+ },
1642
+ {
1643
+ "epoch": 7.59,
1644
+ "learning_rate": 2.4061196105702365e-05,
1645
+ "loss": 0.3338,
1646
+ "step": 5460
1647
+ },
1648
+ {
1649
+ "epoch": 7.62,
1650
+ "learning_rate": 2.3783031988873436e-05,
1651
+ "loss": 0.324,
1652
+ "step": 5480
1653
+ },
1654
+ {
1655
+ "epoch": 7.65,
1656
+ "learning_rate": 2.3504867872044508e-05,
1657
+ "loss": 0.3004,
1658
+ "step": 5500
1659
+ },
1660
+ {
1661
+ "epoch": 7.68,
1662
+ "learning_rate": 2.322670375521558e-05,
1663
+ "loss": 0.3271,
1664
+ "step": 5520
1665
+ },
1666
+ {
1667
+ "epoch": 7.71,
1668
+ "learning_rate": 2.2948539638386647e-05,
1669
+ "loss": 0.3379,
1670
+ "step": 5540
1671
+ },
1672
+ {
1673
+ "epoch": 7.73,
1674
+ "learning_rate": 2.2670375521557722e-05,
1675
+ "loss": 0.284,
1676
+ "step": 5560
1677
+ },
1678
+ {
1679
+ "epoch": 7.76,
1680
+ "learning_rate": 2.239221140472879e-05,
1681
+ "loss": 0.3185,
1682
+ "step": 5580
1683
+ },
1684
+ {
1685
+ "epoch": 7.79,
1686
+ "learning_rate": 2.2114047287899862e-05,
1687
+ "loss": 0.3303,
1688
+ "step": 5600
1689
+ },
1690
+ {
1691
+ "epoch": 7.82,
1692
+ "learning_rate": 2.1835883171070934e-05,
1693
+ "loss": 0.3107,
1694
+ "step": 5620
1695
+ },
1696
+ {
1697
+ "epoch": 7.84,
1698
+ "learning_rate": 2.1557719054242005e-05,
1699
+ "loss": 0.3747,
1700
+ "step": 5640
1701
+ },
1702
+ {
1703
+ "epoch": 7.87,
1704
+ "learning_rate": 2.1279554937413073e-05,
1705
+ "loss": 0.3003,
1706
+ "step": 5660
1707
+ },
1708
+ {
1709
+ "epoch": 7.9,
1710
+ "learning_rate": 2.1001390820584145e-05,
1711
+ "loss": 0.3176,
1712
+ "step": 5680
1713
+ },
1714
+ {
1715
+ "epoch": 7.93,
1716
+ "learning_rate": 2.0723226703755216e-05,
1717
+ "loss": 0.2942,
1718
+ "step": 5700
1719
+ },
1720
+ {
1721
+ "epoch": 7.96,
1722
+ "learning_rate": 2.0445062586926288e-05,
1723
+ "loss": 0.2932,
1724
+ "step": 5720
1725
+ },
1726
+ {
1727
+ "epoch": 7.98,
1728
+ "learning_rate": 2.016689847009736e-05,
1729
+ "loss": 0.2919,
1730
+ "step": 5740
1731
+ },
1732
+ {
1733
+ "epoch": 8.01,
1734
+ "learning_rate": 1.9888734353268428e-05,
1735
+ "loss": 0.2664,
1736
+ "step": 5760
1737
+ },
1738
+ {
1739
+ "epoch": 8.04,
1740
+ "learning_rate": 1.96105702364395e-05,
1741
+ "loss": 0.2788,
1742
+ "step": 5780
1743
+ },
1744
+ {
1745
+ "epoch": 8.07,
1746
+ "learning_rate": 1.933240611961057e-05,
1747
+ "loss": 0.2737,
1748
+ "step": 5800
1749
+ },
1750
+ {
1751
+ "epoch": 8.09,
1752
+ "learning_rate": 1.9054242002781642e-05,
1753
+ "loss": 0.287,
1754
+ "step": 5820
1755
+ },
1756
+ {
1757
+ "epoch": 8.12,
1758
+ "learning_rate": 1.8776077885952714e-05,
1759
+ "loss": 0.2771,
1760
+ "step": 5840
1761
+ },
1762
+ {
1763
+ "epoch": 8.15,
1764
+ "learning_rate": 1.8497913769123785e-05,
1765
+ "loss": 0.2956,
1766
+ "step": 5860
1767
+ },
1768
+ {
1769
+ "epoch": 8.18,
1770
+ "learning_rate": 1.8219749652294853e-05,
1771
+ "loss": 0.2837,
1772
+ "step": 5880
1773
+ },
1774
+ {
1775
+ "epoch": 8.21,
1776
+ "learning_rate": 1.7941585535465928e-05,
1777
+ "loss": 0.3363,
1778
+ "step": 5900
1779
+ },
1780
+ {
1781
+ "epoch": 8.23,
1782
+ "learning_rate": 1.7663421418636996e-05,
1783
+ "loss": 0.3007,
1784
+ "step": 5920
1785
+ },
1786
+ {
1787
+ "epoch": 8.26,
1788
+ "learning_rate": 1.7385257301808068e-05,
1789
+ "loss": 0.3177,
1790
+ "step": 5940
1791
+ },
1792
+ {
1793
+ "epoch": 8.29,
1794
+ "learning_rate": 1.710709318497914e-05,
1795
+ "loss": 0.3089,
1796
+ "step": 5960
1797
+ },
1798
+ {
1799
+ "epoch": 8.32,
1800
+ "learning_rate": 1.6828929068150208e-05,
1801
+ "loss": 0.2654,
1802
+ "step": 5980
1803
+ },
1804
+ {
1805
+ "epoch": 8.34,
1806
+ "learning_rate": 1.655076495132128e-05,
1807
+ "loss": 0.2763,
1808
+ "step": 6000
1809
+ },
1810
+ {
1811
+ "epoch": 8.37,
1812
+ "learning_rate": 1.627260083449235e-05,
1813
+ "loss": 0.3078,
1814
+ "step": 6020
1815
+ },
1816
+ {
1817
+ "epoch": 8.4,
1818
+ "learning_rate": 1.5994436717663422e-05,
1819
+ "loss": 0.2756,
1820
+ "step": 6040
1821
+ },
1822
+ {
1823
+ "epoch": 8.43,
1824
+ "learning_rate": 1.571627260083449e-05,
1825
+ "loss": 0.2902,
1826
+ "step": 6060
1827
+ },
1828
+ {
1829
+ "epoch": 8.46,
1830
+ "learning_rate": 1.5438108484005565e-05,
1831
+ "loss": 0.2787,
1832
+ "step": 6080
1833
+ },
1834
+ {
1835
+ "epoch": 8.48,
1836
+ "learning_rate": 1.5159944367176635e-05,
1837
+ "loss": 0.2727,
1838
+ "step": 6100
1839
+ },
1840
+ {
1841
+ "epoch": 8.51,
1842
+ "learning_rate": 1.4881780250347707e-05,
1843
+ "loss": 0.2758,
1844
+ "step": 6120
1845
+ },
1846
+ {
1847
+ "epoch": 8.54,
1848
+ "learning_rate": 1.4603616133518777e-05,
1849
+ "loss": 0.3012,
1850
+ "step": 6140
1851
+ },
1852
+ {
1853
+ "epoch": 8.57,
1854
+ "learning_rate": 1.4325452016689846e-05,
1855
+ "loss": 0.3084,
1856
+ "step": 6160
1857
+ },
1858
+ {
1859
+ "epoch": 8.6,
1860
+ "learning_rate": 1.404728789986092e-05,
1861
+ "loss": 0.2817,
1862
+ "step": 6180
1863
+ },
1864
+ {
1865
+ "epoch": 8.62,
1866
+ "learning_rate": 1.376912378303199e-05,
1867
+ "loss": 0.3026,
1868
+ "step": 6200
1869
+ },
1870
+ {
1871
+ "epoch": 8.65,
1872
+ "learning_rate": 1.349095966620306e-05,
1873
+ "loss": 0.3288,
1874
+ "step": 6220
1875
+ },
1876
+ {
1877
+ "epoch": 8.68,
1878
+ "learning_rate": 1.3212795549374133e-05,
1879
+ "loss": 0.297,
1880
+ "step": 6240
1881
+ },
1882
+ {
1883
+ "epoch": 8.71,
1884
+ "learning_rate": 1.2934631432545202e-05,
1885
+ "loss": 0.3321,
1886
+ "step": 6260
1887
+ },
1888
+ {
1889
+ "epoch": 8.73,
1890
+ "learning_rate": 1.2656467315716272e-05,
1891
+ "loss": 0.2587,
1892
+ "step": 6280
1893
+ },
1894
+ {
1895
+ "epoch": 8.76,
1896
+ "learning_rate": 1.2378303198887344e-05,
1897
+ "loss": 0.3322,
1898
+ "step": 6300
1899
+ },
1900
+ {
1901
+ "epoch": 8.79,
1902
+ "learning_rate": 1.2100139082058415e-05,
1903
+ "loss": 0.2704,
1904
+ "step": 6320
1905
+ },
1906
+ {
1907
+ "epoch": 8.82,
1908
+ "learning_rate": 1.1821974965229487e-05,
1909
+ "loss": 0.304,
1910
+ "step": 6340
1911
+ },
1912
+ {
1913
+ "epoch": 8.85,
1914
+ "learning_rate": 1.1543810848400557e-05,
1915
+ "loss": 0.2947,
1916
+ "step": 6360
1917
+ },
1918
+ {
1919
+ "epoch": 8.87,
1920
+ "learning_rate": 1.1265646731571628e-05,
1921
+ "loss": 0.2906,
1922
+ "step": 6380
1923
+ },
1924
+ {
1925
+ "epoch": 8.9,
1926
+ "learning_rate": 1.0987482614742698e-05,
1927
+ "loss": 0.2907,
1928
+ "step": 6400
1929
+ },
1930
+ {
1931
+ "epoch": 8.93,
1932
+ "learning_rate": 1.070931849791377e-05,
1933
+ "loss": 0.3304,
1934
+ "step": 6420
1935
+ },
1936
+ {
1937
+ "epoch": 8.96,
1938
+ "learning_rate": 1.043115438108484e-05,
1939
+ "loss": 0.3089,
1940
+ "step": 6440
1941
+ },
1942
+ {
1943
+ "epoch": 8.98,
1944
+ "learning_rate": 1.0152990264255911e-05,
1945
+ "loss": 0.2724,
1946
+ "step": 6460
1947
+ },
1948
+ {
1949
+ "epoch": 9.01,
1950
+ "learning_rate": 9.874826147426983e-06,
1951
+ "loss": 0.286,
1952
+ "step": 6480
1953
+ },
1954
+ {
1955
+ "epoch": 9.04,
1956
+ "learning_rate": 9.596662030598054e-06,
1957
+ "loss": 0.2835,
1958
+ "step": 6500
1959
+ },
1960
+ {
1961
+ "epoch": 9.07,
1962
+ "learning_rate": 9.318497913769124e-06,
1963
+ "loss": 0.262,
1964
+ "step": 6520
1965
+ },
1966
+ {
1967
+ "epoch": 9.1,
1968
+ "learning_rate": 9.040333796940195e-06,
1969
+ "loss": 0.2772,
1970
+ "step": 6540
1971
+ },
1972
+ {
1973
+ "epoch": 9.12,
1974
+ "learning_rate": 8.762169680111267e-06,
1975
+ "loss": 0.2801,
1976
+ "step": 6560
1977
+ },
1978
+ {
1979
+ "epoch": 9.15,
1980
+ "learning_rate": 8.484005563282337e-06,
1981
+ "loss": 0.2681,
1982
+ "step": 6580
1983
+ },
1984
+ {
1985
+ "epoch": 9.18,
1986
+ "learning_rate": 8.205841446453408e-06,
1987
+ "loss": 0.2686,
1988
+ "step": 6600
1989
+ },
1990
+ {
1991
+ "epoch": 9.21,
1992
+ "learning_rate": 7.92767732962448e-06,
1993
+ "loss": 0.2838,
1994
+ "step": 6620
1995
+ },
1996
+ {
1997
+ "epoch": 9.24,
1998
+ "learning_rate": 7.64951321279555e-06,
1999
+ "loss": 0.2886,
2000
+ "step": 6640
2001
+ },
2002
+ {
2003
+ "epoch": 9.26,
2004
+ "learning_rate": 7.37134909596662e-06,
2005
+ "loss": 0.2428,
2006
+ "step": 6660
2007
+ },
2008
+ {
2009
+ "epoch": 9.29,
2010
+ "learning_rate": 7.093184979137692e-06,
2011
+ "loss": 0.2765,
2012
+ "step": 6680
2013
+ },
2014
+ {
2015
+ "epoch": 9.32,
2016
+ "learning_rate": 6.815020862308763e-06,
2017
+ "loss": 0.2936,
2018
+ "step": 6700
2019
+ },
2020
+ {
2021
+ "epoch": 9.35,
2022
+ "learning_rate": 6.536856745479833e-06,
2023
+ "loss": 0.3004,
2024
+ "step": 6720
2025
+ },
2026
+ {
2027
+ "epoch": 9.37,
2028
+ "learning_rate": 6.258692628650904e-06,
2029
+ "loss": 0.26,
2030
+ "step": 6740
2031
+ },
2032
+ {
2033
+ "epoch": 9.4,
2034
+ "learning_rate": 5.980528511821975e-06,
2035
+ "loss": 0.2806,
2036
+ "step": 6760
2037
+ },
2038
+ {
2039
+ "epoch": 9.43,
2040
+ "learning_rate": 5.702364394993046e-06,
2041
+ "loss": 0.2628,
2042
+ "step": 6780
2043
+ },
2044
+ {
2045
+ "epoch": 9.46,
2046
+ "learning_rate": 5.424200278164117e-06,
2047
+ "loss": 0.2636,
2048
+ "step": 6800
2049
+ },
2050
+ {
2051
+ "epoch": 9.49,
2052
+ "learning_rate": 5.1460361613351884e-06,
2053
+ "loss": 0.2652,
2054
+ "step": 6820
2055
+ },
2056
+ {
2057
+ "epoch": 9.51,
2058
+ "learning_rate": 4.867872044506259e-06,
2059
+ "loss": 0.2831,
2060
+ "step": 6840
2061
+ },
2062
+ {
2063
+ "epoch": 9.54,
2064
+ "learning_rate": 4.58970792767733e-06,
2065
+ "loss": 0.2661,
2066
+ "step": 6860
2067
+ },
2068
+ {
2069
+ "epoch": 9.57,
2070
+ "learning_rate": 4.3115438108484005e-06,
2071
+ "loss": 0.2653,
2072
+ "step": 6880
2073
+ },
2074
+ {
2075
+ "epoch": 9.6,
2076
+ "learning_rate": 4.033379694019471e-06,
2077
+ "loss": 0.2693,
2078
+ "step": 6900
2079
+ },
2080
+ {
2081
+ "epoch": 9.62,
2082
+ "learning_rate": 3.7552155771905427e-06,
2083
+ "loss": 0.2632,
2084
+ "step": 6920
2085
+ },
2086
+ {
2087
+ "epoch": 9.65,
2088
+ "learning_rate": 3.4770514603616134e-06,
2089
+ "loss": 0.2788,
2090
+ "step": 6940
2091
+ },
2092
+ {
2093
+ "epoch": 9.68,
2094
+ "learning_rate": 3.1988873435326845e-06,
2095
+ "loss": 0.3019,
2096
+ "step": 6960
2097
+ },
2098
+ {
2099
+ "epoch": 9.71,
2100
+ "learning_rate": 2.9207232267037552e-06,
2101
+ "loss": 0.2778,
2102
+ "step": 6980
2103
+ },
2104
+ {
2105
+ "epoch": 9.74,
2106
+ "learning_rate": 2.6425591098748263e-06,
2107
+ "loss": 0.3145,
2108
+ "step": 7000
2109
+ },
2110
+ {
2111
+ "epoch": 9.76,
2112
+ "learning_rate": 2.364394993045897e-06,
2113
+ "loss": 0.2991,
2114
+ "step": 7020
2115
+ },
2116
+ {
2117
+ "epoch": 9.79,
2118
+ "learning_rate": 2.086230876216968e-06,
2119
+ "loss": 0.2819,
2120
+ "step": 7040
2121
+ },
2122
+ {
2123
+ "epoch": 9.82,
2124
+ "learning_rate": 1.8080667593880393e-06,
2125
+ "loss": 0.2817,
2126
+ "step": 7060
2127
+ },
2128
+ {
2129
+ "epoch": 9.85,
2130
+ "learning_rate": 1.52990264255911e-06,
2131
+ "loss": 0.2689,
2132
+ "step": 7080
2133
+ },
2134
+ {
2135
+ "epoch": 9.87,
2136
+ "learning_rate": 1.2517385257301808e-06,
2137
+ "loss": 0.2703,
2138
+ "step": 7100
2139
+ },
2140
+ {
2141
+ "epoch": 9.9,
2142
+ "learning_rate": 9.735744089012517e-07,
2143
+ "loss": 0.2763,
2144
+ "step": 7120
2145
+ },
2146
+ {
2147
+ "epoch": 9.93,
2148
+ "learning_rate": 6.954102920723227e-07,
2149
+ "loss": 0.2825,
2150
+ "step": 7140
2151
+ },
2152
+ {
2153
+ "epoch": 9.96,
2154
+ "learning_rate": 4.1724617524339365e-07,
2155
+ "loss": 0.2849,
2156
+ "step": 7160
2157
+ },
2158
+ {
2159
+ "epoch": 9.99,
2160
+ "learning_rate": 1.3908205841446452e-07,
2161
+ "loss": 0.3184,
2162
+ "step": 7180
2163
+ },
2164
+ {
2165
+ "epoch": 10.0,
2166
+ "step": 7190,
2167
+ "total_flos": 2.920670798324695e+17,
2168
+ "train_loss": 0.4033946073105007,
2169
+ "train_runtime": 2282.7571,
2170
+ "train_samples_per_second": 6.295,
2171
+ "train_steps_per_second": 3.15
2172
+ }
2173
+ ],
2174
+ "max_steps": 7190,
2175
+ "num_train_epochs": 10,
2176
+ "total_flos": 2.920670798324695e+17,
2177
+ "trial_name": null,
2178
+ "trial_params": null
2179
+ }