ruisusanofi
commited on
End of training
Browse files- README.md +96 -196
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b0-finetuned-raw_img_ready2train_patches
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b0-finetuned-raw_img_ready2train_patches
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the raw_img_ready2train_patches dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6829
|
21 |
+
- Mean Iou: 0.4110
|
22 |
+
- Mean Accuracy: 0.7629
|
23 |
+
- Overall Accuracy: 0.7631
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Eczema: 0.7673
|
26 |
+
- Accuracy Background: 0.7585
|
27 |
+
- Iou Unlabeled: 0.0
|
28 |
+
- Iou Eczema: 0.6284
|
29 |
+
- Iou Background: 0.6047
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 1
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Eczema | Accuracy Background | Iou Unlabeled | Iou Eczema | Iou Background |
|
59 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------:|:----------:|:--------------:|
|
60 |
+
| 1.0753 | 0.0312 | 5 | 1.0925 | 0.2358 | 0.4682 | 0.4698 | nan | 0.5042 | 0.4322 | 0.0 | 0.3705 | 0.3367 |
|
61 |
+
| 0.9863 | 0.0625 | 10 | 1.0697 | 0.2994 | 0.6182 | 0.6306 | nan | 0.8979 | 0.3385 | 0.0 | 0.5784 | 0.3198 |
|
62 |
+
| 1.0056 | 0.0938 | 15 | 1.0377 | 0.3303 | 0.6678 | 0.6792 | nan | 0.9236 | 0.4121 | 0.0 | 0.6064 | 0.3844 |
|
63 |
+
| 1.0133 | 0.125 | 20 | 1.0006 | 0.3478 | 0.6869 | 0.6950 | nan | 0.8710 | 0.5027 | 0.0 | 0.6008 | 0.4425 |
|
64 |
+
| 0.9748 | 0.1562 | 25 | 0.9689 | 0.3543 | 0.6947 | 0.7022 | nan | 0.8647 | 0.5246 | 0.0 | 0.6043 | 0.4586 |
|
65 |
+
| 0.9367 | 0.1875 | 30 | 0.9417 | 0.3566 | 0.6950 | 0.6965 | nan | 0.7290 | 0.6610 | 0.0 | 0.5583 | 0.5114 |
|
66 |
+
| 0.8363 | 0.2188 | 35 | 0.9118 | 0.3557 | 0.6940 | 0.6959 | nan | 0.7366 | 0.6514 | 0.0 | 0.5600 | 0.5069 |
|
67 |
+
| 1.1431 | 0.25 | 40 | 0.8830 | 0.3575 | 0.6963 | 0.6989 | nan | 0.7556 | 0.6370 | 0.0 | 0.5686 | 0.5039 |
|
68 |
+
| 0.7312 | 0.2812 | 45 | 0.8592 | 0.3680 | 0.7098 | 0.7133 | nan | 0.7888 | 0.6307 | 0.0 | 0.5907 | 0.5133 |
|
69 |
+
| 0.8135 | 0.3125 | 50 | 0.8268 | 0.3559 | 0.6994 | 0.7083 | nan | 0.8992 | 0.4997 | 0.0 | 0.6173 | 0.4505 |
|
70 |
+
| 0.7528 | 0.3438 | 55 | 0.8110 | 0.3525 | 0.6960 | 0.7053 | nan | 0.9055 | 0.4866 | 0.0 | 0.6162 | 0.4412 |
|
71 |
+
| 0.8405 | 0.375 | 60 | 0.7967 | 0.3518 | 0.6950 | 0.7041 | nan | 0.9008 | 0.4893 | 0.0 | 0.6140 | 0.4415 |
|
72 |
+
| 0.7865 | 0.4062 | 65 | 0.7791 | 0.3561 | 0.6992 | 0.7075 | nan | 0.8869 | 0.5116 | 0.0 | 0.6130 | 0.4553 |
|
73 |
+
| 0.8309 | 0.4375 | 70 | 0.7650 | 0.3652 | 0.7083 | 0.7147 | nan | 0.8512 | 0.5655 | 0.0 | 0.6090 | 0.4864 |
|
74 |
+
| 0.6775 | 0.4688 | 75 | 0.7615 | 0.3613 | 0.7044 | 0.7115 | nan | 0.8651 | 0.5437 | 0.0 | 0.6102 | 0.4738 |
|
75 |
+
| 0.7033 | 0.5 | 80 | 0.7498 | 0.3737 | 0.7179 | 0.7227 | nan | 0.8260 | 0.6099 | 0.0 | 0.6087 | 0.5125 |
|
76 |
+
| 0.8377 | 0.5312 | 85 | 0.7443 | 0.3790 | 0.7243 | 0.7290 | nan | 0.8303 | 0.6184 | 0.0 | 0.6154 | 0.5217 |
|
77 |
+
| 0.825 | 0.5625 | 90 | 0.7547 | 0.3676 | 0.7125 | 0.7201 | nan | 0.8840 | 0.5411 | 0.0 | 0.6225 | 0.4802 |
|
78 |
+
| 0.7408 | 0.5938 | 95 | 0.7415 | 0.3767 | 0.7228 | 0.7295 | nan | 0.8747 | 0.5708 | 0.0 | 0.6281 | 0.5021 |
|
79 |
+
| 0.8087 | 0.625 | 100 | 0.7201 | 0.3926 | 0.7404 | 0.7445 | nan | 0.8318 | 0.6491 | 0.0 | 0.6296 | 0.5483 |
|
80 |
+
| 0.7146 | 0.6562 | 105 | 0.7096 | 0.4002 | 0.7493 | 0.7520 | nan | 0.8109 | 0.6877 | 0.0 | 0.6307 | 0.5699 |
|
81 |
+
| 0.6875 | 0.6875 | 110 | 0.7047 | 0.4010 | 0.7502 | 0.7541 | nan | 0.8398 | 0.6606 | 0.0 | 0.6407 | 0.5621 |
|
82 |
+
| 0.6382 | 0.7188 | 115 | 0.7031 | 0.3982 | 0.7471 | 0.7519 | nan | 0.8543 | 0.6400 | 0.0 | 0.6426 | 0.5521 |
|
83 |
+
| 0.6551 | 0.75 | 120 | 0.6953 | 0.4018 | 0.7512 | 0.7553 | nan | 0.8450 | 0.6573 | 0.0 | 0.6433 | 0.5621 |
|
84 |
+
| 0.7074 | 0.7812 | 125 | 0.6912 | 0.4054 | 0.7553 | 0.7583 | nan | 0.8236 | 0.6871 | 0.0 | 0.6402 | 0.5760 |
|
85 |
+
| 0.768 | 0.8125 | 130 | 0.6866 | 0.4048 | 0.7546 | 0.7579 | nan | 0.8278 | 0.6814 | 0.0 | 0.6410 | 0.5736 |
|
86 |
+
| 0.7543 | 0.8438 | 135 | 0.6851 | 0.4031 | 0.7526 | 0.7564 | nan | 0.8374 | 0.6679 | 0.0 | 0.6422 | 0.5671 |
|
87 |
+
| 0.7107 | 0.875 | 140 | 0.6803 | 0.6122 | 0.7586 | 0.7608 | nan | 0.8071 | 0.7101 | nan | 0.6379 | 0.5865 |
|
88 |
+
| 0.7054 | 0.9062 | 145 | 0.6799 | 0.4098 | 0.7608 | 0.7622 | nan | 0.7924 | 0.7292 | 0.0 | 0.6350 | 0.5943 |
|
89 |
+
| 1.1302 | 0.9375 | 150 | 0.6801 | 0.4103 | 0.7616 | 0.7626 | nan | 0.7840 | 0.7393 | 0.0 | 0.6330 | 0.5981 |
|
90 |
+
| 0.6037 | 0.9688 | 155 | 0.6827 | 0.4111 | 0.7628 | 0.7632 | nan | 0.7721 | 0.7534 | 0.0 | 0.6300 | 0.6032 |
|
91 |
+
| 0.8577 | 1.0 | 160 | 0.6829 | 0.4110 | 0.7629 | 0.7631 | nan | 0.7673 | 0.7585 | 0.0 | 0.6284 | 0.6047 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.40.1
|
97 |
+
- Pytorch 2.3.0
|
98 |
+
- Datasets 2.19.0
|
99 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14885804
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:492a040ea18e6fbc064ac28cad199d5cb59952d8ffd430ac7524aa36e60fd0dd
|
3 |
size 14885804
|