--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dinov2-small-finetuned-papsmear results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8602941176470589 --- # dinov2-small-finetuned-papsmear This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3843 - Accuracy: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.846 | 0.9935 | 38 | 1.0217 | 0.5956 | | 1.0241 | 1.9869 | 76 | 0.8413 | 0.6544 | | 0.9178 | 2.9804 | 114 | 0.7204 | 0.7426 | | 0.693 | 4.0 | 153 | 0.5731 | 0.75 | | 0.7157 | 4.9935 | 191 | 0.5501 | 0.8162 | | 0.5006 | 5.9869 | 229 | 0.6096 | 0.7794 | | 0.4576 | 6.9804 | 267 | 0.5535 | 0.7941 | | 0.467 | 8.0 | 306 | 0.5041 | 0.8162 | | 0.4378 | 8.9935 | 344 | 0.5771 | 0.8015 | | 0.2876 | 9.9869 | 382 | 0.4234 | 0.8456 | | 0.2308 | 10.9804 | 420 | 0.4946 | 0.8382 | | 0.2312 | 12.0 | 459 | 0.5098 | 0.8309 | | 0.1625 | 12.9935 | 497 | 0.3813 | 0.8603 | | 0.1775 | 13.9869 | 535 | 0.3695 | 0.8529 | | 0.1358 | 14.9020 | 570 | 0.3843 | 0.8603 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1