File size: 5,681 Bytes
9d83cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import logging
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"  # Suppress TensorFlow logging
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0" # Disable oneDNN optimizations
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings


warnings.filterwarnings("ignore", message="A NumPy version >=")
logging.basicConfig(level=logging.ERROR)
logging.getLogger("transformers").setLevel(logging.ERROR)


# Check if Flash Attention is available
try:
    import flash_attn  # noqa: F401
    flash_attn_exists = True
except ImportError:
    flash_attn_exists = False


# Define the DeepthoughtModel class
class DeepthoughtModel:
    def __init__(self):
        self.model_name = "ruliad/deepthought-8b-llama-v0.01-alpha"
        print(f"Loading model: {self.model_name}")

        self.tokenizer = AutoTokenizer.from_pretrained(
            self.model_name,
            add_bos_token=False,
            trust_remote_code=True,
            padding="left",
            torch_dtype=torch.bfloat16,
        )

        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            attn_implementation=("flash_attention_2" if flash_attn_exists else "default"),
            use_cache=True,
            trust_remote_code=True,
        )

    # Helper method to generate the initial prompt
    def _get_initial_prompt(
        self, query: str, system_message: str = None
    ) -> str:
        '''Helper method to generate the initial prompt format.'''
        if system_message is None:
            system_message = '''You are a superintelligent AI system, capable of comprehensive reasoning. When provided with <reasoning>, you must provide your logical reasoning chain to solve the user query. Be verbose with your outputs.'''

        return f'''<|im_start|>system
{system_message}<|im_end|>

<|im_start|>user
{query}<|im_end|>

<|im_start|>reasoning
<reasoning>
[
  {{
    "step": 1,
    "type": "problem_understanding",
    "thought": "'''

    # Method to generate reasoning given the prompt
    def generate_reasoning(self, query: str, system_message: str = None) -> dict:
        print('Generating reasoning...')

        # Get and print prompt
        prompt = self._get_initial_prompt(query, system_message)
        print(prompt, end='')

        # Tokenize the prompt
        inputs = self.tokenizer(prompt, return_tensors='pt').input_ids.to(self.model.device)

        try:

            # Generate and stream reasoning
            outputs = self.model.generate(
                input_ids=inputs,
                max_new_tokens=800,
                do_sample=True,
                temperature=0.2,
                top_k=200,
                top_p=1.0,
                eos_token_id=self.tokenizer.eos_token_id,
                streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True),
            )

            # Get the reasoning string
            generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)

            return {
                'raw_output': generated_text,
                'success': True,
                'error': None,
                'initial_prompt': prompt,
            }

        except Exception as e:
            logging.error(f'Error during generation: {e}')
            return {
                'raw_output': None,
                'success': False,
                'error': str(e),
                'initial_prompt': None,
            }

    # Method to generate the final output
    def generate_final_output(self, reasoning_output: dict) -> dict:

        # Get the reasoning text and create the full prompt for the final output
        reasoning_text = reasoning_output['raw_output'].replace(reasoning_output['initial_prompt'], '')
        full_prompt = f'''{reasoning_text}<|im_end|>

<|im_start|>assistant
'''

        print('Generating final response...')

        # Tokenize the full prompt
        inputs = self.tokenizer(full_prompt, return_tensors='pt').input_ids.to(self.model.device)

        try:

            # Generate and stream the final output
            _ = self.model.generate(
                input_ids=inputs,
                max_new_tokens=400,
                do_sample=True,
                temperature=0.1,
                top_k=50,
                top_p=0.9,
                eos_token_id=self.tokenizer.eos_token_id,
                streamer=TextStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
            )

            return {'success': True, 'error': None}

        except Exception as e:
            logging.error(f'Error during final generation: {e}')
            return {'success': False, 'error': str(e)}


def main():
    model = DeepthoughtModel()

    # Test queries
    queries = [
        "We want you to tell us the answer to life, the universe and everything. We'd really like an answer, something simple.",
    ]

    # Process each query at a time (because we are streaming)
    for query in queries:
        print(f'\nProcessing query: {query}')
        print('='*50)

        # Reasoning
        reasoning_result = model.generate_reasoning(query)
        if not reasoning_result['success']:
            print(f'\nError in reasoning: {reasoning_result["error"]}')
            print('='*50)
            continue

        print('-'*50)

        # Final output
        final_result = model.generate_final_output(reasoning_result)
        if not final_result['success']:
            print(f'\nError in final generation: {final_result["error"]}')

        print('='*50)

if __name__ == '__main__':
    main()