ruslanmv commited on
Commit
67ab69a
·
verified ·
1 Parent(s): c29725a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - text-generation-inference
6
+ - transformers
7
+ - ruslanmv
8
+ - llama
9
+ - trl
10
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
11
+ datasets:
12
+ - ruslanmv/ai-medical-dataset
13
+ ---
14
+
15
+ # ai-medical-model-32bit: Fine-Tuned Llama3 for Technical Medical Questions
16
+ [![](future.jpg)](https://ruslanmv.com/)
17
+ This repository provides a fine-tuned version of the powerful Llama3 8B Instruct model, specifically designed to answer medical questions in an informative way.
18
+ It leverages the rich knowledge contained in the AI Medical Dataset ([ruslanmv/ai-medical-dataset](https://huggingface.co/datasets/ruslanmv/ai-medical-dataset)).
19
+
20
+ **Model & Development**
21
+
22
+ - **Developed by:** ruslanmv
23
+ - **License:** Apache-2.0
24
+ - **Finetuned from model:** meta-llama/Meta-Llama-3-8B-Instruct
25
+
26
+ **Key Features**
27
+
28
+ - **Medical Focus:** Optimized to address health-related inquiries.
29
+ - **Knowledge Base:** Trained on a comprehensive medical chatbot dataset.
30
+ - **Text Generation:** Generates informative and potentially helpful responses.
31
+
32
+ **Installation**
33
+
34
+ This model is accessible through the Hugging Face Transformers library. Install it using pip:
35
+
36
+ ```bash
37
+ !python -m pip install --upgrade pip
38
+ !pip3 install torch==2.2.1 torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121
39
+ !pip install bitsandbytes accelerate
40
+ ```
41
+
42
+ **Usage Example**
43
+
44
+ Here's a Python code snippet demonstrating how to interact with the `ai-medical-model-32bit` model and generate answers to your medical questions:
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
48
+ import torch
49
+ model_name = "ruslanmv/ai-medical-model-32bit"
50
+ device_map = 'auto'
51
+ bnb_config = BitsAndBytesConfig(
52
+ load_in_4bit=True,
53
+ bnb_4bit_quant_type="nf4",
54
+ bnb_4bit_compute_dtype=torch.float16,
55
+ )
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ model_name,
58
+ quantization_config=bnb_config,
59
+ trust_remote_code=True,
60
+ use_cache=False,
61
+ device_map=device_map
62
+ )
63
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
64
+ tokenizer.pad_token = tokenizer.eos_token
65
+
66
+ def askme(question):
67
+ prompt = f"<|start_header_id|>system<|end_header_id|> You are a Medical AI chatbot assistant. <|eot_id|><|start_header_id|>User: <|end_header_id|>This is the question: {question}<|eot_id|>"
68
+ # Tokenizing the input and generating the output
69
+ #prompt = f"{question}"
70
+ # Tokenizing the input and generating the output
71
+ inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
72
+ outputs = model.generate(**inputs, max_new_tokens=256, use_cache=True)
73
+ answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
74
+ # Try Remove the prompt
75
+ try:
76
+ # Split the answer at the first line break, assuming system intro and question are on separate lines
77
+ answer_parts = answer.split("\n", 1)
78
+ # If there are multiple parts, consider the second part as the answer
79
+ if len(answer_parts) > 1:
80
+ answers = answer_parts[1].strip() # Remove leading/trailing whitespaces
81
+ else:
82
+ answers = "" # If no split possible, set answer to empty string
83
+ print(f"Answer: {answers}")
84
+ except:
85
+ print(answer)
86
+
87
+ # Example usage
88
+ # - Question: Make the question.
89
+ question="What was the main cause of the inflammatory CD4+ T cells?"
90
+ askme(question)
91
+ ```
92
+ the type of answer is :
93
+ ```
94
+ The main cause of inflammatory CD4+ T cells is typically attributed to an imbalance in the immune system's response to an antigen, leading to an overactive immune response. This can occur due to various factors, such as:
95
+
96
+ 1. **Autoimmune disorders**: In conditions like rheumatoid arthritis, lupus, or multiple sclerosis, the immune system mistakenly attacks the body's own tissues, leading to chronic inflammation and the activation of CD4+ T cells.
97
+ 2. **Infections**: Certain infections, like tuberculosis or HIV, can trigger an excessive immune response, resulting in the activation of CD4+ T cells.
98
+ 3. **Environmental factors**: Exposure to pollutants, toxins, or allergens can trigger an immune response, leading to the activation of CD4+ T cells.
99
+ 4. **Genetic predisposition**: Some individuals may be more susceptible to developing inflammatory CD4+ T cells due to their genetic makeup.
100
+ 5. **Immunosuppression**: Weakened immune systems, such as those resulting from immunosuppressive therapy or HIV/AIDS, can lead to an overactive immune response and the activation of CD4+ T cells.
101
+
102
+ These factors can lead to the activation of CD4+
103
+ ```
104
+ **Important Note**
105
+
106
+ This model is intended for informational purposes only and should not be used as a substitute for professional medical advice. Always consult with a qualified healthcare provider for any medical concerns.
107
+
108
+ **License**
109
+
110
+ This model is distributed under the Apache License 2.0 (see LICENSE file for details).
111
+
112
+ **Contributing**
113
+
114
+ We welcome contributions to this repository! If you have improvements or suggestions, feel free to create a pull request.
115
+
116
+ **Disclaimer**
117
+
118
+ While we strive to provide informative responses, the accuracy of the model's outputs cannot be guaranteed.