Eugene Cheah (picocreator)
commited on
Commit
·
9789e00
1
Parent(s):
bb01ae9
head divisor fix
Browse files- configuration_rwkv5.py +30 -23
- modeling_rwkv5.py +8 -11
configuration_rwkv5.py
CHANGED
@@ -21,44 +21,46 @@ from transformers.utils import logging
|
|
21 |
|
22 |
logger = logging.get_logger(__name__)
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
26 |
|
27 |
class Rwkv5Config(PretrainedConfig):
|
28 |
"""
|
29 |
-
This is the configuration class to store the configuration of a [`
|
30 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
defaults will yield a similar configuration to that of the RWVK-4
|
32 |
-
[RWKV/rwkv-
|
33 |
|
34 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
documentation from [`PretrainedConfig`] for more information.
|
36 |
|
37 |
|
38 |
Args:
|
39 |
-
vocab_size (`int`, *optional*, defaults to
|
40 |
-
Vocabulary size of the
|
41 |
-
`inputs_ids` passed when calling [`
|
42 |
-
|
|
|
|
|
|
|
43 |
Dimensionality of the embeddings and hidden states.
|
44 |
-
num_hidden_layers (`int`, *optional*, defaults to
|
45 |
Number of hidden layers in the model.
|
46 |
attention_hidden_size (`int`, *optional*):
|
47 |
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
48 |
-
num_attention_heads (`int`, *optional*, defaults to 64):
|
49 |
-
The attention heads to use in rwkv5 self_attention module.
|
50 |
-
head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module.
|
51 |
intermediate_size (`int`, *optional*):
|
52 |
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
53 |
-
|
54 |
The epsilon to use in the layer normalization layers.
|
55 |
bos_token_id (`int`, *optional*, defaults to 0):
|
56 |
-
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as
|
57 |
as GPTNeoX.
|
58 |
eos_token_id (`int`, *optional*, defaults to 0):
|
59 |
-
The id of the end of sentence token in the vocabulary. Defaults to 0 as
|
60 |
GPTNeoX.
|
61 |
-
rescale_every (`int`, *optional*,
|
62 |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
63 |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
64 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
@@ -70,28 +72,30 @@ class Rwkv5Config(PretrainedConfig):
|
|
70 |
Example:
|
71 |
|
72 |
```python
|
73 |
-
>>> from transformers import
|
74 |
|
75 |
-
>>> # Initializing a
|
76 |
-
>>> configuration =
|
77 |
|
78 |
>>> # Initializing a model (with random weights) from the configuration
|
79 |
-
>>> model =
|
80 |
|
81 |
>>> # Accessing the model configuration
|
82 |
>>> configuration = model.config
|
83 |
```"""
|
84 |
|
85 |
model_type = "rwkv5"
|
|
|
86 |
|
87 |
-
def __init__(
|
88 |
self,
|
89 |
vocab_size=65536,
|
|
|
90 |
hidden_size=768,
|
91 |
num_hidden_layers=24,
|
92 |
attention_hidden_size=None,
|
93 |
-
num_attention_heads=64,
|
94 |
head_size=64,
|
|
|
95 |
intermediate_size=None,
|
96 |
layer_norm_epsilon=1e-5,
|
97 |
bos_token_id=0,
|
@@ -99,14 +103,16 @@ class Rwkv5Config(PretrainedConfig):
|
|
99 |
rescale_every=6,
|
100 |
tie_word_embeddings=False,
|
101 |
use_cache=True,
|
|
|
102 |
**kwargs,
|
103 |
):
|
104 |
self.vocab_size = vocab_size
|
|
|
105 |
self.hidden_size = hidden_size
|
106 |
self.num_hidden_layers = num_hidden_layers
|
107 |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
108 |
-
self.num_attention_heads = num_attention_heads
|
109 |
self.head_size = head_size
|
|
|
110 |
self.intermediate_size = None
|
111 |
self.layer_norm_epsilon = layer_norm_epsilon
|
112 |
self.rescale_every = rescale_every
|
@@ -114,7 +120,8 @@ class Rwkv5Config(PretrainedConfig):
|
|
114 |
|
115 |
self.bos_token_id = bos_token_id
|
116 |
self.eos_token_id = eos_token_id
|
|
|
117 |
|
118 |
super().__init__(
|
119 |
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
120 |
-
)
|
|
|
21 |
|
22 |
logger = logging.get_logger(__name__)
|
23 |
|
24 |
+
RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
25 |
+
|
26 |
+
}
|
27 |
|
28 |
|
29 |
class Rwkv5Config(PretrainedConfig):
|
30 |
"""
|
31 |
+
This is the configuration class to store the configuration of a [`RwkvModel`]. It is used to instantiate a RWKV
|
32 |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
defaults will yield a similar configuration to that of the RWVK-4
|
34 |
+
[RWKV/rwkv-4-169m-pile](https://huggingface.co/RWKV/rwkv-4-169m-pile) architecture.
|
35 |
|
36 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
documentation from [`PretrainedConfig`] for more information.
|
38 |
|
39 |
|
40 |
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50277):
|
42 |
+
Vocabulary size of the RWKV model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`RwkvModel`].
|
44 |
+
context_length (`int`, *optional*, defaults to 1024):
|
45 |
+
The maximum sequence length that this model can be be used with in a single forward (using it in RNN mode
|
46 |
+
lets use any sequence length).
|
47 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
48 |
Dimensionality of the embeddings and hidden states.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
Number of hidden layers in the model.
|
51 |
attention_hidden_size (`int`, *optional*):
|
52 |
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
|
|
|
|
|
|
53 |
intermediate_size (`int`, *optional*):
|
54 |
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
55 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
56 |
The epsilon to use in the layer normalization layers.
|
57 |
bos_token_id (`int`, *optional*, defaults to 0):
|
58 |
+
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer
|
59 |
as GPTNeoX.
|
60 |
eos_token_id (`int`, *optional*, defaults to 0):
|
61 |
+
The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV uses the same tokenizer as
|
62 |
GPTNeoX.
|
63 |
+
rescale_every (`int`, *optional*, default to 6):
|
64 |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
65 |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
66 |
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
|
72 |
Example:
|
73 |
|
74 |
```python
|
75 |
+
>>> from transformers import RwkvConfig, RwkvModel
|
76 |
|
77 |
+
>>> # Initializing a Rwkv configuration
|
78 |
+
>>> configuration = RwkvConfig()
|
79 |
|
80 |
>>> # Initializing a model (with random weights) from the configuration
|
81 |
+
>>> model = RwkvModel(configuration)
|
82 |
|
83 |
>>> # Accessing the model configuration
|
84 |
>>> configuration = model.config
|
85 |
```"""
|
86 |
|
87 |
model_type = "rwkv5"
|
88 |
+
attribute_map = {"max_position_embeddings": "context_length"}
|
89 |
|
90 |
+
def __init__( #1.5B World
|
91 |
self,
|
92 |
vocab_size=65536,
|
93 |
+
context_length=4096,
|
94 |
hidden_size=768,
|
95 |
num_hidden_layers=24,
|
96 |
attention_hidden_size=None,
|
|
|
97 |
head_size=64,
|
98 |
+
head_size_divisor=8,
|
99 |
intermediate_size=None,
|
100 |
layer_norm_epsilon=1e-5,
|
101 |
bos_token_id=0,
|
|
|
103 |
rescale_every=6,
|
104 |
tie_word_embeddings=False,
|
105 |
use_cache=True,
|
106 |
+
model_version="5_2",
|
107 |
**kwargs,
|
108 |
):
|
109 |
self.vocab_size = vocab_size
|
110 |
+
self.context_length = context_length
|
111 |
self.hidden_size = hidden_size
|
112 |
self.num_hidden_layers = num_hidden_layers
|
113 |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
|
|
114 |
self.head_size = head_size
|
115 |
+
self.head_size_divisor = head_size_divisor
|
116 |
self.intermediate_size = None
|
117 |
self.layer_norm_epsilon = layer_norm_epsilon
|
118 |
self.rescale_every = rescale_every
|
|
|
120 |
|
121 |
self.bos_token_id = bos_token_id
|
122 |
self.eos_token_id = eos_token_id
|
123 |
+
self.model_version = model_version
|
124 |
|
125 |
super().__init__(
|
126 |
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
127 |
+
)
|
modeling_rwkv5.py
CHANGED
@@ -178,6 +178,7 @@ def rwkv_linear_attention_v5_cpu(
|
|
178 |
gate,
|
179 |
lxw,
|
180 |
lxb,
|
|
|
181 |
ow,
|
182 |
state,
|
183 |
):
|
@@ -199,7 +200,7 @@ def rwkv_linear_attention_v5_cpu(
|
|
199 |
state = at + time_decay * state
|
200 |
|
201 |
out = out.reshape(B * T, H * S)
|
202 |
-
out = F.group_norm(out, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
203 |
out = out.to(dtype=hidden.dtype) * gate
|
204 |
out = out @ ow
|
205 |
|
@@ -221,6 +222,7 @@ def rwkv_linear_attention(
|
|
221 |
gate,
|
222 |
lxw,
|
223 |
lxb,
|
|
|
224 |
ow,
|
225 |
state,
|
226 |
):
|
@@ -244,13 +246,14 @@ def rwkv_linear_attention(
|
|
244 |
gate,
|
245 |
lxw,
|
246 |
lxb,
|
|
|
247 |
ow,
|
248 |
state,
|
249 |
)
|
250 |
else:
|
251 |
out, state = WKV_5.apply(B, T, H * S, H, receptance, key, value, time_decay, time_first, state)
|
252 |
out = out.reshape(B * T, H * S)
|
253 |
-
out = F.group_norm(out, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
254 |
out = out.to(dtype=hidden.dtype) * gate
|
255 |
out = out @ ow
|
256 |
return out, state
|
@@ -271,6 +274,7 @@ class RwkvSelfAttention(nn.Module):
|
|
271 |
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L146
|
272 |
num_attention_heads = hidden_size // config.head_size
|
273 |
self.num_attention_heads = num_attention_heads
|
|
|
274 |
attention_hidden_size = (
|
275 |
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size
|
276 |
)
|
@@ -343,6 +347,7 @@ class RwkvSelfAttention(nn.Module):
|
|
343 |
gate,
|
344 |
self.ln_x.weight,
|
345 |
self.ln_x.bias,
|
|
|
346 |
self.output.weight.t(),
|
347 |
state=layer_state,
|
348 |
)
|
@@ -747,14 +752,6 @@ class Rwkv5Model(Rwkv5PreTrainedModel):
|
|
747 |
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
748 |
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
749 |
else:
|
750 |
-
# Deal with quantization statistics
|
751 |
-
if hasattr(block.attention.output.weight, "SCB"):
|
752 |
-
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
753 |
-
block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
754 |
-
elif hasattr(block.attention.output.weight, "quant_state"):
|
755 |
-
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
|
756 |
-
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id)
|
757 |
-
else:
|
758 |
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
759 |
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
760 |
|
@@ -859,4 +856,4 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
859 |
state=rwkv_outputs.state,
|
860 |
hidden_states=rwkv_outputs.hidden_states,
|
861 |
attentions=rwkv_outputs.attentions,
|
862 |
-
)
|
|
|
178 |
gate,
|
179 |
lxw,
|
180 |
lxb,
|
181 |
+
head_size_divisor,
|
182 |
ow,
|
183 |
state,
|
184 |
):
|
|
|
200 |
state = at + time_decay * state
|
201 |
|
202 |
out = out.reshape(B * T, H * S)
|
203 |
+
out = F.group_norm(out / head_size_divisor, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
204 |
out = out.to(dtype=hidden.dtype) * gate
|
205 |
out = out @ ow
|
206 |
|
|
|
222 |
gate,
|
223 |
lxw,
|
224 |
lxb,
|
225 |
+
head_size_divisor,
|
226 |
ow,
|
227 |
state,
|
228 |
):
|
|
|
246 |
gate,
|
247 |
lxw,
|
248 |
lxb,
|
249 |
+
head_size_divisor,
|
250 |
ow,
|
251 |
state,
|
252 |
)
|
253 |
else:
|
254 |
out, state = WKV_5.apply(B, T, H * S, H, receptance, key, value, time_decay, time_first, state)
|
255 |
out = out.reshape(B * T, H * S)
|
256 |
+
out = F.group_norm(out / head_size_divisor, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
257 |
out = out.to(dtype=hidden.dtype) * gate
|
258 |
out = out @ ow
|
259 |
return out, state
|
|
|
274 |
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L146
|
275 |
num_attention_heads = hidden_size // config.head_size
|
276 |
self.num_attention_heads = num_attention_heads
|
277 |
+
self.head_size_divisor = config.head_size_divisor
|
278 |
attention_hidden_size = (
|
279 |
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size
|
280 |
)
|
|
|
347 |
gate,
|
348 |
self.ln_x.weight,
|
349 |
self.ln_x.bias,
|
350 |
+
self.head_size_divisor,
|
351 |
self.output.weight.t(),
|
352 |
state=layer_state,
|
353 |
)
|
|
|
752 |
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
753 |
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
754 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
756 |
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
757 |
|
|
|
856 |
state=rwkv_outputs.state,
|
857 |
hidden_states=rwkv_outputs.hidden_states,
|
858 |
attentions=rwkv_outputs.attentions,
|
859 |
+
)
|